• 제목/요약/키워드: Radical transfer

검색결과 236건 처리시간 0.026초

DFT Study of Water-Assisted Intramolecular Proton Transfer in the Tautomers of Thymine Radical Cation

  • Kim, Nam-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권7호
    • /
    • pp.1009-1014
    • /
    • 2006
  • Density functional theory calculations are applied to investigate the intramolecular proton transfer in the tautomers of thymine radical cation and its hydrated complexes with one water molecule. The optimized structures and energies for 6 tautomers and 6 transition states of thymine radical cation are calculated at the B3LYP/6-311++G(d,p) level. It is predicted that the order of relative stability for the keto and enol tautomers of thymine radical cation is the same with that of the neutral thymine tautomers, though the enol tautomers are more stabilized with respect to the di-keto form in the radical cation than in the neutral state. A new channel of proton transfer from >C5-$CH_{3}$ of thymine is found to open and have the lowest energy barrier of other proton transfer processes in thymine radical cation. The roles of hydration are also investigated with thymine-water 1 : 1 complex ions. The presence of water significantly lowers the barrier of the proton transfer, which clearly shows the assisting role of hydration even with one water molecule

Radical Transfer 반응을 이용한 Polypyrrole 효소전극의 효소고정화 향상 (Improvement in Enzyme Immobilization of Polypyrrole Enzyme Electrode using Radical Transfer)

  • 김현철;조영재;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 전자세라믹스 센서 및 박막재료 반도체재료 일렉트렛트 및 응용기술
    • /
    • pp.100-103
    • /
    • 2000
  • In the case of immobilizing of glucose oxidase into polypyrrole (PPy) using electrosynthesis, the glucose oxidase (GOx) forms a coordinate bond with the polymers backbone. However, because of intrinsic insulation and net-chain of the enzyme, the charge transfer and mass transport are obstructed during the film growth. Therefore, the film growth is dull. We synthesized the enzyme electrode by electropolymerization added some organic solvent. A formative seeds of film growth is delayed by adding ethanol. The delay is induced by radical transfer between ethanol and pyrrole monomer. The radical transfer shares the contribution of dopant between electrolyte anion and GOx polyanion. This may lead to increase amount of immobilized the enzyme in PPy. For the UV absorption spectra of synthetic solution before synthesis and after, in the case of ethanol added, the optical density was slightly decreased for the GOx peaks. It suggests amount of GOx in the solution was decreased and amount of GOx in the film was increased. We established qualitatively that amount of immobilization can be improved by adding a little ethanol in the synthetic solution. It is due to radical transfer reaction. The radical transfer shares the contribution of dopant between small and fast electrolyte anion and big and slow GOx polyanion.

  • PDF

Structure and Intramolecular Proton Transfer of Alanine Radical Cations

  • Lee, Gab-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1561-1565
    • /
    • 2012
  • The structures of the four lowest alanine conformers, along with their radical cations and the effect of ionization on the intramolecular proton transfer process, are studied using the density functional theory and MP2 method. The energy order of the radical cations of alanine differs from that of the corresponding neutral conformers due to changes in the basicity of the $NH_2$ group upon ionization. Ionization favors the intramolecular proton transfer process, leading to a proton-transferred radical-cation structure, [$NH_3{^+}-CHCH_3-COO{\bullet}$], which contrasts with the fact that a proton-transferred zwitterionic conformer is not stable for a neutral alanine in the gas phase. The energy barrier during the proton transfer process is calculated to be about 6 kcal/mol.

이소니트릴의 자유라디칼반응 (Homolytic Reactions of Isonitriles)

  • 김성수
    • 대한화학회지
    • /
    • 제24권3호
    • /
    • pp.250-258
    • /
    • 1980
  • 여러종류의 자유라디칼들이 이소니트릴에 첨가되어 중간체인 imidoyl 자유라디칼 RN=CR'을 형성한다. 이것은 또한 imine으로부터 imidoyl hydrogen 을 떼어 내는 다음과 같은 반응에 의해서도 생성될 수 있다. RN=C(H)R' + R"${\cdot}{\rightarrow}$ RN=CR' + R"-H 중간체인 imidoyl 자유라디칼은 ${\beta}$-cleavage 및 aton transfer 반응을 통해서 안정된 분자를 형성한다. ${\beta}$-cleavage는 imidoyl 자유라디칼의 구조에 따라서 두개의 다른 방향으로의 반응이 가능하다. Cyanide transfer와 소위 말하는 정상적인 ${\beta}$-cleavage가 그러한 반응들이다. t-Butoxy 자유라디칼이 t-butylisonitrile 7에 첨가되면 중간체인 t-Bu-N=C-O-Bu-t가 생성되는데, 이것은 ${\beta}$-cleavage반응을 통해서 t-butylisocyanate와 t-butyl 자유라디칼을 형성한다. Phenyl 자유라디칼은 7에 첨가되어 중간체인 t-Bu-N=$C-C_6H_5$를 형성하는데 이것은 cyanide transfer 반응을 통해서 benzonitrile과 t-butyl 자유라디칼로 분해된다. 여기서 생성되는 t-butyl 자유라디칼은 다시 7에 첨가하여 intermediate인 자유라디칼 t-Bu-N=C-Bu-t을 형성하고, 이것은 다시 pivalonlonitrile과 t-butyl 자유라디칼로 분해되는데 이러한 반응이 반복되므로 radical chain isomerization을 일으킨다. Silyl 자유라디칼은 7에 첨가되어 t-Bu-N=$C-Si(CH_3)_3$를 형성하고, 이것은 cyanide transfer 반응을 거쳐서 다시 $(CH_3)_3$SiCN과 t-butyl 자유라디칼로 분해된다.

  • PDF

Glucose Oxidase 고정화에 대한 전기화학적/광학적 분석 (Spectro-electrochemical Analyses of Immobilization of Glucose Oxidase)

  • 김현철;조영재;구할본;사공건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.316-319
    • /
    • 2000
  • In the case of immobilizing of glucose oxidase into polypyrrole (PPy) using electrosynthesis, the glucose oxidase (GOx) forms a coordinate bond with the polymer's backbone. However, because of intrinsic insulation and net-chain of the enzyme, the charge transfer and mass transport are obstructed during the film growth. Therefore, the film growth is dull. We synthesized the enzyme electrode by electropolymerization added some organic solvent, A formative seeds of film growth is delayed by adding the solvent. The delay is induced by radical transfer between the solvent and pyrrole monomer. In the case of adding ethanol, the radical transfer shares the contribution of dopant between electrolyte anion and GOx polyanion. This may lead to increase amount of immobilized the enzyme in ppy. However, adding tetrahydrofuran (THF), the radical transfer is more brisk, resulting in short chained polymer. Therefore, the doping level is lowered and then amount of immobilized of enzyme is decreased. For the UV absorption spectra of synthetic solution before synthesis and after, in the case of ethanol added, the optical density was slightly decreased for the GOx peaks. It suggests amount of GOx in the solution was decreased and amount of GOx in the film was increased. We established qualitatively that amount of immobilization can be improved by adding a little ethanol in the synthetic solution. It is due to radical transfer reaction. The radical transfer shares the contribution of dopant between small and fast electrolyte anion and big and slow GOx polyanion.

  • PDF

Successful pregnancy following transmyometrial embryo transfer after robot-assisted radical trachelectomy

  • Hue, Hye Jeong;Choi, Hyun Ji;Park, Jee Yoon;Suh, Dong Hoon;Lee, Jung Ryeol;Jee, Byung Chul;Kim, Seul Ki
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권2호
    • /
    • pp.184-187
    • /
    • 2021
  • Radical trachelectomy is a fertility-preserving alternative to radical hysterectomy in carefully selected young women with early-stage cervical cancer. However, in cases with subsequent severe cervical stenosis, assisted reproductive techniques can be difficult. This is a case report of a 34-year-old patient who underwent robot-assisted radical trachelectomy and cerclage for early-stage (IB2) adenosquamous carcinoma. Three months after surgery, the patient underwent ovarian stimulation using a gonadotropin-releasing hormone antagonist protocol. As it was impossible to perform transcervical embryo transfer due to the almost complete absence of the cervical opening, transmyometrial embryo transfer under ultrasound guidance was performed. This resulted in a successful singleton pregnancy. This is the first case of successful pregnancy conceived by in vitro fertilization with transmyometrial embryo transfer in a patient who had previously undergone robot-assisted radical trachelectomy.

ATRP(atom transfer radical polymerization)에 의한 polystyrene과 poly ethylene glycol methyl ether methacrylate(PEGMA)의 블록 공중합체의 합성 (Synthesis of block copolymer of polystyrene and polyethylene glycol methyl ether methacrylate(PEGMA) by ATRP (atom transfer radical polymerization))

  • 김상헌
    • 한국응용과학기술학회지
    • /
    • 제26권3호
    • /
    • pp.306-316
    • /
    • 2009
  • In this study, block copolymer of polystyrene and polyethylene glycol methyl ether methacrylate(PEGMA) by ATRP(atom transfer radical polymerization) method was synthesized. 4 arm-molecule which contained halogen atom was synthesized for an initiator. With 4 arm-molecule monodispered polystyrene were synthesized by ATRP method. The molecular change of synthesized monodispersed polystyrene with respect to time was investigated and living polymer characteristic was confirmed. Block copolymer of polystyrene and polyethylene glycol methyl ether methacrylate(PEGMA) was synthesized by ATRP with macroinitiator which was synthesized from the monodispersed polystyrene(Mn=12000). The molecular weight of obtained PS-b-PEGMA was 22,000.

Protective Effect Against Hydroxyl Radical-induced DNA Damage and Antioxidant Mechanism of [6]-gingerol: A Chemical Study

  • Lin, Jing;Li, Xican;Chen, Li;Lu, Weizhao;Chen, Xianwen;Han, Lu;Chen, Dongfeng
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1633-1638
    • /
    • 2014
  • [6]-Gingerol is known as the major bioactive constituent of ginger. In the study, it was observed to effectively protect against ${\bullet}OH$-induced DNA damage ($IC_{50}$ $328.60{\pm}24.41{\mu}M$). Antioxidant assays indicated that [6]-gingerol could efficiently scavenge various free radicals, including ${\bullet}OH$ radical ($IC_{50}$ $70.39{\pm}1.23{\mu}M$), ${\bullet}O_2{^-}$ radical ($IC_{50}$ $228.40{\pm}9.20{\mu}M$), $DPPH{\bullet}$radical ($IC_{50}$ $27.35{\pm}1.44{\mu}M$), and $ABTS{^+}{\bullet}$radical ($IC_{50}$ $2.53{\pm}0.070{\mu}M$), and reduce $Cu^{2+}$ ion ($IC_{50}$ $11.97{\pm}0.68{\mu}M$). In order to investigate the possible mechanism, the reaction product of [6]-gingerol and $DPPH{\bullet}$ radical was further measured using HPLC combined mass spectrometry. The product showed a molecular ion peak at m/z 316 $[M+Na]^+$, and diagnostic fragment loss (m/z 28) for quinone. On this basis, it can be concluded that: (i) [6]-gingerol can effectively protect against ${\bullet}OH$-induced DNA damage; (ii) a possible mechanism for [6]-gingerol to protect against oxidative damage is ${\bullet}OH$ radical scavenging; (iii) [6]-gingerol scavenges ${\bullet}OH$ radical through hydrogen atom ($H{\bullet}$) transfer (HAT) and sequential electron (e) proton transfer (SEPT) mechanisms; and (iv) both mechanisms make [6]-gingerol be oxidized to semi-quinone or quinone forms.

상이동촉매인 트리카프릴메틸암모니움 클로라이드를 사용한 스티렌 라디칼중합의 동력학적 연구 (The Kinetics of Radical Polymerization of Styrene with Tricaprylymethylammonium Chloride as a Phase-Transfer Catalyst)

  • 박상욱;손인조;박상보
    • 접착 및 계면
    • /
    • 제2권2호
    • /
    • pp.11-19
    • /
    • 2001
  • 트리카프릴메틸 암모니움 클로라이드를 상이동촉매로 사용하여 $Na_2S_2O_8$의 수용액과 톨루엔의 이상계에서 질소분위기하에 $60^{\circ}C$에서 스티렌의 라디칼중합을 행하였다. 중합시의 초기 중합속도는 촉매와 $Na_2S_2O_8$의 초기공급 농도보다는 수용액 상에서의 4급 암모늄양이온과 퍼록시디슬페이트 음이온의 농도로 나타낼 수 있었다. 관찰된 초기중합속도를 사용하여 분균일 액-액계에서의 순환 상이동에 의한 개시과정을 포함한 중함메카니즘을 밝힐 수 있었다. 폴리스티렌의 점도평균분자량은 $Na_2S_2O_8$의 농도에 역비례하였는데, 라디칼 중합메카니즘에 의하여 $[Q^+]([S_2O{_8}^{2-}]{\alpha}_2)^{1/2}$로 나타내어졌다.

  • PDF