• Title/Summary/Keyword: Radio telemetry transmission

Search Result 13, Processing Time 0.025 seconds

On-line Gamma Monitoring System for Environmental Radiation Measurement around KAERI-site (KAERI 부지 주변의 환경선량 측정을 위한 온라인 감마선량 감시시스템)

  • Lee, Chang-Woo;Park, Doo-Won;Lee, Won-Yun;Choi, Yong-Ho;Hong, Kwang-Hee;Kim, Sam-Rang;Lee, Hyun-Duk;Lee, Jeong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.2
    • /
    • pp.147-156
    • /
    • 1994
  • On-line gamma monitoring system around KAERI-site was set up to monitor the radiation fluctuations in environment. Data on gamma exposure rates measured by the ionication chamber in the monitoring posts are transmitted to a computer of central control station with. radio telemetry transmission modem and monitored in real time. Radio telemetry transmission system is economical and reliable on handling and storing of data. This monitroing system can triger an early warning system in the event of abnormal radiation levels.

  • PDF

Development and Evaluation of Advanced Telemetry System (개선된 텔레메트리 시스템 개발 및 평가)

  • 박차훈;서희돈;박종대
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.513-517
    • /
    • 2000
  • In this study, we fabricated the advanced telemetry system that transmitting media use radio frequency(RF) for the middle range measurement of the physiological signals and receiving media use optical for electromagnetic interference problem. The telemetry system within a size of 65$\times$125$\times$45mm consists of three parts: a RF transmitter, a optical receiver and a physiological signal processing CMOS one chip. Advantages of proposed telemetry system is wireless middle range(50m) FM transmission, reduce electromagnetic interference to a minimum which enables a comfortable bed-side telemetry system.

  • PDF

Development of A Biotelemetry System for A Totally Implantable Artificial Heart (완전이식 인공심장용 무선정보 전송장치의 개발)

  • Choi, Won-Woo;Kang, Dong-Woo;Park, Seong-Keun;Choi Jae-Soon;Kim, Hee-Chan;Min, Byoung-Goo
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.57-66
    • /
    • 1996
  • In this paper, a new biotelemetry system for a transcutaneous data communication between an implanted artificial heart with a control system and an external human-interfaced management system has been developed. A radio telemetry using radio frequency is a commonly used method in the conventional telemetry systems. But, it is not suitable for the medical applications because of not only an interference due to a radio broadcasting but also a harmfulness to the human body. In this paper, therefore, a new biotelemetry system applied to an artificial heart has been developed with the results of the recent research for an optical telemetry system based on the infrared light transmission with good skin permeability. The performance of the biotelemetry system developed has been assessed through mock circulatory experiments, and the clinical applicability has been also confirmed with the successful results in the animal experiments.

  • PDF

Implementation of a portable telemetry system based on wavelet transform. (웨이블릿 알고리즘을 적용한 휴대용 텔레미트리 시스템)

  • 박차훈;서희돈
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.113-116
    • /
    • 2000
  • In this paper presents the portable wireless ECG data detection and diagnosis system based on discreet wavelet transform. An algorithm based on wavelet transform suitable for real time implementation has been developed in order to detect ECG characteristics. In particular, QRS complex, S and T waves may be distinguished form noise, baseline drift or artifacts. Proposed telemetry system that a transmitting media using radio frequency(RF) for the middle range measurement of the physiological signals and receiving media using optical for electromagnetic interference problem. A standard hi-directional serial communication interface between the telemetry system and a personal computer or laptop, allows read-time controlling, diagnosing and monitoring of system. A portable telemetry system within a size. of 65${\times}$125${\times}$45mm consists of three parts: a digital signal processing part for physiological signal detect or diagnose, RF transmitter for data transfer and a optical receiver for command receive. Advantages of proposed telemetry system is wireless middle range(50m) FM transmission, reduce electromagnetic interference to a minimum. which enables a comfortable diagnosis system at home.

  • PDF

Implementation of Wavelet Transform for a Real time Monitoring ECG Telemetry System (웨이브렛 변환을 이용한 실시간 모니터링 ECG 텔레미트리 시스템 구현)

  • 박차훈;서희돈
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.27-32
    • /
    • 2002
  • In this study, we fabricated the advanced telemetry system that transmitting media use radio frequency(RF) for the middle range measurement of the physiological signals and receiving media use optical for electromagnetic interference problem. The telemetry system within a size of 65$\times$125$\times$45mm consists of three parts: RF transmitter, optical receiver and physiological signal processing CMOS one chip. Advantages of proposed telemetry system is wireless middle range(50m) FM transmission, reduce electromagnetic interference to a minimum which enables a comfortable bed-side telemetry system. The monitoring system was designed in the structure of dual-processor for the real time processing. The use of the one channel in our study made it possible the real time wavelet transformation of electrocardiogram data of 360Hz, 16 bits for every 1.42 seconds.

  • PDF

Design of a Multiple Transmit Coil Driver for Implantable Telemetry Devices (원격 생체 측정 장치를 위한 다중 발신 코일 구동 드라이버 설계)

  • Ryu, Young Kee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.609-614
    • /
    • 2015
  • Implanted telemetry systems provide the ability to monitor different species of animals while they move within their cages. Species monitored include mice, rats, rabbits, dogs, pigs, primates, sheep, horses, cattle, and others. A miniature transmitter implanted in each animal measures one or more parameters. Parameters measured include arterial pressure, intra-pleural pressure, left ventricular pressure, intra-ocular pressure, bladder pressure, ECG, EMG, EEG, EOG, temperature, activity, and other parameters and transmits the data via radio frequency signals to a nearby receiver. Every conventional dedicated transmitter contains one or more sensors, cpu and battery. Due to the expected life of the battery, the measuring time is limited. To overcome these problems, electromagnetic inductive coupling based wireless power transmission technology using multiple transmit coils were proposed, with each coil having a different active area driven by the coil driver. In this research, a parallel resonance based coil driver and serial resonance based coil driver are proposed. From the experiments we see that the parallel coil driver shows better performance under a low impedance and multiple coils configuration. However, the serial coil driver is more efficient for high impedance transmit coils.

A FSK Radio-telemetry System for Monitoring Vital Signs in UHF Band (UHF 대역 FSK에 의한 생체신호 무선 전송장치의 개발)

  • Park D.C.;Lee H.K.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.255-260
    • /
    • 2000
  • This paper presents a radio-telemetry patient monitor. which is used for intensive cal?e units. emergency and surgical operation rooms to monitor continuously patients' vital signs. The radio-telemetry patient monitor consists of a vital sign acquisition unit. wireless data transmission units and a vital sign-monitoring unit. The vital sign acquisition unit amplifies biological signals, performs analog signal to serial digital data conversion using the one chip micro-controller. The converted digital data is modulated FSK in UHF band using low output power and transmitted to a remote site in door. In comparison with analog modulation. FSK has major advantages to improve performance with respect to noise resistance with fower error and the potential ability to process and Improve quality of the received data. The vital sign-monitoring unit consists of the receiver to demodulate the modulated digital data, the LCD monitor to display vital signs continuously and the thermal head printer to record a signal.

  • PDF

The Telemetry Transmitter with Variable Data rate Transmission (가변 데이터 전송 가능한 텔레메트리(Telemetry) 송신기)

  • Kim, Jang-Hee;Hong, Seung-Hyun;Park, Byong-Kwan;Kim, Bok-ki;Kim, Hyo-Jong
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.1
    • /
    • pp.53-60
    • /
    • 2020
  • In this paper, We have studied the structure of a Telemetry Transmitter capable of transmitting variable data rates. This paper proposed a structure combining variable pre-modulation filter with cutoff characteristic with variable input sample rate converter. Variable pre-modulation filter has the same characteristics as pre-modulation filter and is converted to a constant sampling rate without structural changes according to the variable input data rate. We propose a software program that actively controls variable pre-modulation filter and variable input sample rate converter to respond to real-time changing data.

A Study on the Biotelemetry using Infra-red Light (적외선을 이용한 생체신호의 원격측정에 관한 연구)

  • Huh, Soo-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.169-175
    • /
    • 1993
  • Recently, interest in infra-red(IR) telemetry has increased because of the entirely different propagation and reflection properties of IR light as compared to radiowaves. IR hardly penetrates most materials and is reflected from obstacles. An biotelemetry system using these characteristics of indirect transmitted IR lights was developed, in which 3 ECG's are multiplexed and modulated in PDM/PIM pulse sequence. This proto-type system enables us to realize the non-restraint measurement of biological signals. Compared with conventional radio telemetry, this technique has some merits such as no electromagnetic interference, no frequency allocation problem, no government control over transmission power.

  • PDF

Design of Downlink Channel for Transportable KOMPSAT Ground Station Using Sub-Carrier Signal (부 반송파를 사용하는 이동형 다목적실용위성 관제국에 대한 하향 링크 채널 설계)

  • Ahn, Sang-Il;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.313-321
    • /
    • 2009
  • This paper describes the downlink design of a transportable small-sized KOMPSAT ground station using sub-carrier signal. Based on the analysis of the transmission modes of satellite real-time telemetry and range measurement signals, the downlink channel design of KOMPSAT ground station using sub-carrier signal was processed. By considering the threshold signal-to-noise ratio of real-time 2 kbps telemetry signal and the required signal-to-noise ratio for satellite range measurement, the small-sized KOMPSAT downlink channel with G/T value of 6.5 dB/K was designed. The real G/T of implemented ground station was proven to be 6.62 dB/K when measured using the Sun. Moreover, through interface test with KOMPSAT, the ground station has shown the required link performance for real-time telemetry acquisition using sub-carrier and was consequently evaluated to be adequate for a transportable small-sized KOMPSAT ground station.