• Title/Summary/Keyword: Radon

Search Result 464, Processing Time 0.028 seconds

The Design and Implementation of IoT-Based Radon Measurement Control System (IoT 기반 라돈 측정 제어시스템 설계 및 구현)

  • Ahn, Heuihak;Gu, Jayeong;Lee, Sangyoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • This paper is a IoT-based radon meter control system and a radon meter control method using it. The IoT-based radon meter control system is control system for controlling a radon meter by network-connecting radon meter and a user terminal. The radon measuring device may be provided with a radon sensor to measure a radon value of a preset management target area, it collect and store numerical data. The radon meter control system monitors the condition of the radon meter, it includes control center configured to deliver radon meter management information generated to a user terminal. Also radon measurements to determine the exact amount of radon gas. Therefore, the situation-specific actions based on radon numbers can be promptly implemented to ensure adequate protection for those who are vulnerable to radon and those who live in the area. Condition monitoring allows the radon meter to respond quickly to failure or failure of the radon meter. In addition, it is possible to secure a baseline of radon's influence and to obtain research data to cope with radon by establishing big data with radon measurements.

Concentration Distributions and A Reduction Strategy of Airborne Radon in Seoul Metropolitan Subway Stations (서울시 지하철역내의 라돈 농도분포 및 저감대책)

  • 김동술;김윤신;김신도;신응배;김성천;유정석
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.271-277
    • /
    • 1993
  • Indoor radon has been known as one of the notorious carcinogens. However, a safe environmental criterion of radon has not yet been established in Korea, The main objectives of this study were to study concentration distributions of radon, to trace radon sources in subways, and to obtain a strategy for radon reduction in Seoul metropolitan area. Radon concentrations had been extensively determined by several steps. The first step was to survey radon levels in all of 83 subway stations from October to November in 1991. The second step was to select 40 out of 83 stations and then to study seasonal variations in 1991 and 1992. The third step was to monitor radon levels by hourly-basis plans. The fourth step was to seek a radon reduction strategy by altering ventilation at Ankuk station where had the highest radon concentration during the first measurement step. Each underground floor in the station was divided into 10 sites to measure hourly radon variations. The final step of the study was to measure radon concentrations in groundwater that is one of the possible main sources radon place. The result of the various measuring approaches showed short-and long-term radon variation and indicated radon reduction schemes.

  • PDF

Prediction for the Lifetime Effective Dose and Radon Exposure Risk by using Dose Conversion Convention: Base on the Indoor Radon Concentration of Lecture Room in a University (선량 환산 관례를 이용한 생애유효선량 및 라돈피폭 위험도 예측: 대학 강의실 라돈농도 중심으로)

  • Lee, Jae-Seung;Kweon, Dae Cheol
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.243-249
    • /
    • 2018
  • The indoor radon concentration was measured in the lecture room of the university and the radon concentration was converted to the amount related to the radon exposure using the dose conversion convention and compared with the reference levels for the radon concentration control. The effect of indoor radon inhalation was evaluated by estimating the life effective dose and the risk of exposure. To measure the radon concentration, measurements were made with a radon meter and a dedicated analysis Capture Ver. 5.5 program in a university lecture room from January to February 2018. The radon concentration measurement was carried out for 5 consecutive hours for 24 hours after keeping the airtight condition for 12 hours before the measurement. Radon exposure risk was calculated using the radon dose and dose conversion factor. Indoor radon concentration, radon exposure risk, and annual effective dose were found within the 95% confidence interval as the minimum and maximum boundary ranges. The radon concentration in the lecture room was $43.1-79.1Bq/m^3$, and the maximum boundary range within the 95% confidence interval was $77.7Bq/m^3$. The annual effective dose was estimated to be 0.20-0.36 mSv/y (mean 0.28 mSv/y). The life-time effective dose was estimated to be 0.66-1.18 mSv (mean $0.93{\pm}0.08mSv$). Life effective doses were estimated to be 0.88-0.99 mSv and radon exposure risk was estimated to be 12.4 out of 10.9 per 100,000. Radon concentration was measured, dose effective dose was evaluated using dose conversion convention, and degree of health hazard by indoor radon exposure was evaluated by predicting radon exposure risk using nominal hazard coefficient. It was concluded that indoor living environment could be applied to other specific exposure situations.

Towards Quantitative Assessment of Human Exposures to Indoor Radon Pollution from Groundwater

  • Donghan Yu;Lee, Han-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E2
    • /
    • pp.43-51
    • /
    • 2001
  • A report by the national research council in the United States suggested that many lung cancer deaths each year be associated with breathing radon in indoor air. Most of the indoor radon comes directly from soil beneath the basement of foundations. Recently, radon released from groundwater is found to contribute to the total inhalation risk from indoor air. This study presents the quantitative assessment of human exposures to radon released from the groundwater into indoor air. At first, a three-compartment model is developed to describe the transfer and distribution of radon released from groundwater in a house through showering, washing clothes, and flushing toilets. Then, to estimate a daily human exposure through inhalation of such radon for an adult. a physiologically-based pharmacokinetic(PBPK) model is developed. The use of a PBPK model for the inhaled radon could provide useful information regarding the distribution of radon among the organs of the human body. Indoor exposure patterns as input to the PBPK model are a more realistic situation associated with indoor radon pollution generated from a three-compartment model describing volatilization of radon from domestic water into household air. Combining the two models for inhaled radon in indoor air can be used to estimate a quantitative human exposure through the inhalation of indoor radon for adults based on two sets of exposure scenarios. The results obtained from the present study would help increase the quantitative understanding of risk assessment issues associated with the indoor radon released from groundwater.

  • PDF

Development of Predictive Model for Annual Mean Radon Concentration for Assessment of Annual Effective dose of Radon Exposure (라돈 노출 유효선량 평가를 위한 연간 평균 라돈 농도 예측모델 개발)

  • Lee, Cheolmin;Kang, Daeyong;Koh, Sangbaek;Cho, Yongseog;Lee, Dajeong;Lee, Sulbee
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1107-1114
    • /
    • 2016
  • This research, sponsored by the Korean Ministry of Environment in 2014, was the first epidemiological study in Korea that investigated the health impact assessment of radon exposure. Its purpose was to construct a model that calculated the annual mean cumulative radon exposure concentrations, so that reliable conclusions could be drawn from environment-control group research. Radon causes chronic lung cancer. Therefore, the long-term measurement of radon exposure concentration, over one year, is needed in order to develop a health impact assessment for radon. Hence, based on the seasonal correction model suggested by Pinel et al.(1995), a predictive model of annual mean radon concentration was developed using the year-long seasonal measurement data from the National Institute of Environmental Research, the Korea Institute of Nuclear Safety, the Hanyang University Outdoor Radon Concentration Observatory, and the results from a 3-month (one season) survey, which is the official test method for radon measurement designated by the Korean Ministry of Environment. In addition, a model for evaluating the effective annual dose for radon was developed, using dosimetric methods. The model took into account the predictive model for annual mean radon concentrations and the activity characteristics of the residents.

Properties Adsorption According to Test Condition of Radon Adsorption-type Matrix (라돈 흡착형 경화체의 시험 조건에 따른 흡착특성)

  • Lim, Hyun-Ung;Kim, Heon-Tae;Gwon, Oh-Han;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.109-110
    • /
    • 2016
  • This study is a absorbing Radon gas to occur indoor or outdoor. As a absorbent Radon gas, making cementless abso rbent matrix that accomplish experiment. In other to accomplish this experiment, Confirming Radon gas release ratio and accurating absorption, reduction of a half-life that 3,8 days from Radon gas source, we need to decide Radon absorbent experiment method. So, we accomplish to find Radon measurement method considering properties and a half-life that 3,8 days from Radon gas source. As the experimental factors, After stabilizing of Radon gas source and so on, we accomplish the experiment that is there or not and seal of Radon source.

  • PDF

Implementation of Popular Radon Detector Using Pin Photodiode (핀 포토다이오드를 이용한 보급형 라돈 검출기의 구현)

  • Yun, Sung-Ha;Kim, Jae-Hak;Kim, Gyu-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.99-106
    • /
    • 2016
  • When radon is staying at alveoli and bronchial tubes, the collapse of radon creates progeny nuclides (alpha ray, beta ray, gamma ray, etc.). They emit radiation causing a mutation in the chromosome of the cell, resulting in lung cancer. In other words, the main cause of lung cancer is radiation emitting as the result of radon collapse rather than radon gas. The 82% of radiation exposed to people is the natural radiation. Most of the natural radiation is radon. If we properly control the concentration of radon indoors, the probability of occurrence of lung cancer could be decreases to be 70%. Until now, to measure the indoor radon concentration, imported radon sensors are needed. So, DB construction of indoor radon emission and popular radon measuring apparatus should be developed. In this paper, we propose the radon detecting method using PIN photodiode. Also, we confirmed the PIN photodiode could be used as radon sensor module through some experimental studies.

Seasonal Radon Concentration and Correlation Analysis of Indoor Radon Originated from Soil and Soil Radon at Detached House (계절적 라돈농도 변화 및 토양기원 실내라돈과 토양내 라돈농도의 상관성 분석 -단독주택 사례연구-)

  • Cho, Ju-Hyun;Kim, Younghee
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.105-111
    • /
    • 2017
  • In this study, the variation of indoor and soil radon concentrations were measured at a test bed (detached house), and correlation analysis was performed using linear regression. The results showed that the average concentration of indoor radon was increased by about 20% when the heater was operated in the house, but it was decreased by 15% when the ventilation system was on. In the changes of seasonal radon concentrations, soil and indoor radon concentrations in winter were higher than in summer. Statistical analysis showed a weak correlation between the soil radon and indoor radon, but the correlation (R=0.852, $R^2=0.726$) was relatively high at exhaust condition in the winter. It is difficult to extrapolate the results of the study to the general cases because radon distribution is highly site-specific, but the result of this study could be used as a reference for radon management and reduction of detached house in the future investigations.

The Determination of Radon Progeny Concentration in Controlled Radon Environment (라돈을 제어하는 환경에서 라돈 자핵종의 농도 결정)

  • Seo, Kyung-Won;Lee, Byung-Kee
    • Journal of Radiation Protection and Research
    • /
    • v.18 no.1
    • /
    • pp.37-51
    • /
    • 1993
  • A standard radon chamber and a radon generator adjusted by ventilation system which had used in this research were assumed to calculate theoretically the concentration of radon progeny using Jacobi model theory. On the one hand, the filter sampled from the radon standard chamber and the radon generator was measured and analysed by the alpha spectrometry method. It is clear that measured result shows a good agreement with theoretical result. Therefore, it is observed that this research can made a great contribution to more accurate internal dose assessment by alpha emission of radon progeny in indoor radon environment, and fast individual measurement and determination of concentration for radon progeny.

  • PDF

A study on the Prediction of Indoor Concentration due to Radon Exhalation from Domestic Building Materials (건축자재 라돈 방출에 의한 실내공기 중 라돈농도 예측에 관한 연구)

  • Lee, Cheolmin;Gwak, Yoonkyung;Lee, Donghyun;Lee, Dajeong;Cho, Yongseok
    • Journal of Environmental Science International
    • /
    • v.24 no.9
    • /
    • pp.1131-1138
    • /
    • 2015
  • Radon exhalation rates have been determined for samples of concrete, gypsum board, marble, and tile among building materials that are used in domestic construction environment. Radon emanation was measured using the closed chamber method based on CR-39 nuclear track detectors. The radon concentrations in apartments of 100 households in Seoul, Busan and Gyeonggi Provinces were measured to verify the prediction model of indoor radon concentration. The results obtained by the four samples showed the largest radon exhalation rate of $0.34314Bq/m^2{\cdot}h$ for sample concrete. The radon concentration contribution to indoor radon in the house due to exhalation from the concrete was $31.006{\pm}7.529Bq/m^3$. The difference between the prediction concentration and actual measured concentration was believed to be due to the uncertainty resulting from the model implementation.