• Title/Summary/Keyword: Rail Stability

Search Result 233, Processing Time 0.026 seconds

Roadbed Behavior in Managanese Crossing of Turnout System (분기기 망간 크로싱부 노반거동)

  • Jeon, Sang-Soo;Eum, Ki-Young;Kim, Jae-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.45-57
    • /
    • 2008
  • The improved turnout system is developed to speed-up the pre-existing railroad. The research has been actively carried out far the improved turnout system and the impact factor is estimated using the data sets achieved from the dynamic wheel-load field tests in both the conventional and the improved turnout system. In this study, the track performance and roadbed behavior are examined for the conventional and improved turnout system using the estimated impact factor. Dynamic wheel load and rail pressure are evaluated to assess the track performance. Roadbed stress and settlements are estimated using numerical analysis. Additionally, the stability of roadbed is estimated in soft roadbed condition influenced by the weather effects and cyclic train loading. The results show that dynamic wheel load, rail pressure, roadbed stress, and roadbed settlements in the improved turnout system substantially decrease compared with those in the conventional turnout system.

Effect of shale or mica schist on slope stability (셰일 및 운모편암의 사면안전성에 미치는 영향)

  • Lee, Byung-Joo;Shin, Hee-Soon;SunWoo, Choon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1-11
    • /
    • 2006
  • To be design the slope, the area distributed the shale or mica schist which was metamorphosed by shale must carefully consider the stability. The shale has the detrital materials of which the grain size are 1/256mm and fissility. As the reason the slope of shale is always unstable by bedding slip and fissility but also the joint and fault. Mica schist is also another unstable rock for slope by schistosity, cleavage, axial plane of a fold etc. In general shale and mica schist contain the swelling clay minerals such as smectite, vermiculite and montmorillonite. These minerals make the slope unstable. At OO tunnel construction area for the rail way of the Kyungbu high speed train, the slope of mica schist is very unstable by the distribution phenomena of the discontinuous plane such as joints which are 1-5cm spacing and thrust and strike-slip fault. By the drilling core of this area, most RQD have 0-20%.

  • PDF

Analysis on the characteristics of rainfall driven landslides through field study (현장조사를 통한 강우로 인한 철도연변 사면의 활동 특성분석)

  • SaGong, Myung;Hwang, Seon-Keun;Lee, Su-Hyung;Kim, Hyun-Ki;Kim, Min-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.145-152
    • /
    • 2005
  • Landslides triggered by rainfall produces severe effects on the serviceability and stability of railway operation. Since small amount of soil mass slipped on the rail can cause derailment which will cause severe danger on the human and trains, slope stability problem is one of the major concerns on the operation of railway. In this study we investigate the some of characteristics of rainfall driven landslide near railroad. A total of 23 sites were visited. From the results four types of landslides based upon the morphology of the slipped slope triggered by rainfall were classified. From the analysis dimensions of slopes (height, length and slope) do not show particular correlation with the types of landslides. In addition, morphological and geological features of slope influence on the occurrence of different types of landslides.

  • PDF

A Study on a Substation Static Load Model Including the Mobility of a Railway Load (철도 부하의 이동성을 반영한 변전소 정태부하모델링 수립에 대한 연구)

  • Chang, Sang-Hoon;Youn, Seok-Min;Kim, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.315-323
    • /
    • 2015
  • Nowadays, it is expected that mobility loads such as electric railways and electric vehicles will be penetrated gradually and affect on the power system stability by their load characteristics. Various researches have been carried out about electric vehicles for the recent decade though the load of electric railway could be forecasted because of the specified path and timetable, is a field with a long historic background. Some precise 5th polynomial equations are required to analyze the power system stability considering mobility load to be increased in the immediate future while the electric railway dispatching simulator uses load models with constant power and constant impedance for the system analysis. In this paper, seasonal urban railway load models are established as the form of 5th polynomial equations and substation load modeling methods are proposed merging railway station load models and general load models. Additionally, load management effects by the load modeling are confirmed through the case studies, in which seasonal load models are developed for Seoul Subway Line No. 2, Gyeongui Line and Airport Railroad and the substation load change is analyzed according to the railway load change.

Stability of Tunnel under Shallow Overburden and Poor Rock Conditions Using Numerical Simulations (수치해석적 방법을 통한 저토피 및 암질불량구간의 터널 안정성 검토)

  • Kim, Jungkuk;Kim, Heesu;Ban, Hoki;Kim, Donggyou
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.39-47
    • /
    • 2021
  • Tunneling is widely increased in rail-road construction due to the large portion of mountainous regions in Korea as well as the improving running performance of train. Tunneling under poor rock condition, shallow overburden, or existing fault zone has high risk for collapse. Therefore, this study presents the stability of tunnel under unfavorable geological conditions using finite element methods.

A Study on the Evaluation of Stability due to Ground Deterioration of Slope (사면의 지반 열화로 인한 안정성 평가에 관한 연구)

  • Han, Young-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.83-92
    • /
    • 2018
  • The lapse of time may cause in the slope structure various deterioration phenomenon progresses in the ground of slope, and collapse due to deterioration of strength, resulting in a decrease in the service life. The approach to slope stability due to the ground deterioration is a different concept from the existing limit equilibrium analysis, which is limited to the physical characteristics and geometrical structure of ground. In this study, we conducted a comparative analysis of various literature studies related to the slope failure characteristics and behaviors to presented the optimal formulas for shear strength reduction, such as the exponential function, the logarithmic function and the inverse hyperbolic function. And then a case study was performed on cut slope of Gyeongbu High Speed Rail construction site along the Yangsan fault zone, where the slope failure of shale layer vulnerable to deterioration occurred. As a result, it was confirmed that landslide occurred due to reduction of shear strength by deterioration, as safety factor is approx. 1.0 at the time when the slope failure occurred. Based on the comprehensive case study, as a quantitative approach to the evaluation of slope stability due to deterioration of ground, finally we propose a method for evaluating slope stability with optimal strength reduction curves.

Hybrid Analysis of Displacement Behavior and Numerical Simulation on Tunnel Design (터널 변위 거동 및 수치 모의실험의 결합 해석)

  • Jeong, Yun-Young;Han, Heui-Soo;Lee, Jae-Ho
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.47-60
    • /
    • 2010
  • This study is focused on the analysis of tunnel behavior to estimate the stability on tunnel design. An estimation method was proposed as a hybrid consideration, which contains the displacement analysis by 3D numerical simulation, the maximum displacement obtained after field measurement, and an assessment of tunnel stability using a deformation analysis proposed by Sakurai(1988, 1997). The points of case study by Sakurai(1988, 1997) were replotted considering his analysis. From the new analysis of the tunnel case study, the trend line for analyzed points is analogized, which curve is divided into stable, unstable and failure zone. To evaluate the estimation method, a special shape of railway tunnel was selected, which are the Inchon international airport rail way connected to subway line 9 in Gimpo, Korea. The point s of upper and below track on the Inchon international airport rail way were satisfied to the stability of tunnel after reinforcing. Also the points shows the higher apparent Young's modulus, which resulted from improvement on shear strength by the micro silica grouting and the supporting of umbrella method. Therefore, if new analysis used, proper tunnel reinforcing method could be selected according to tunnel strain and geological property.

A Parameter Study of Lateral Damper on Hunting Stability of Maglev Vehicle (자기부상열차의 주행안정성 해석에 의한 횡 댐퍼 파라미터 연구)

  • Han, Jong-Boo;Kim, Ki-Jung;Kim, Chang-Hyun;Han, Hyung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.75-80
    • /
    • 2011
  • In the area of wheel on rail vehicle, hunting stability which is generated by lateral motion is one of important characteristics for running safety. It might cause not only oscillation of vehicle but also derailment in an unstable area of the high speed. A Maglev vehicle is usually controlled the voltage to maintain the air gap between electromagnet and track. However, in Maglev system, an occurrence possibility of hunting motion could be high, because Maglev vehicle is not controlled directly lateral force between electromagnet and track in the curved guideway. In this paper, running safety is evaluated when Maglev vehicle run on guideway at high speed according to installment of damper between maglev vehicles and bogies, and to analyze the effect of it. Also, the parametric study is carried out for selecting effective lateral damper properties through the simulation. To accurately predict the running safety, 3d multibody dynamics models which are included air spring, guideway conditions and irregularities profile are used. With the results acquired, suggestions were made whether to adopt the damper and how to optimize the damping characteristics.

  • PDF

Design Method of Railway Wheel Profile with Objective Function of Eqivalent Conicity (등가답면구배를 목적함수로 하는 차륜답면형상 설계기법)

  • Hur, Hyun-Moo;You, Won-Hee;Park, Joon-Hyuk;Kim, Min-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.13-19
    • /
    • 2010
  • A design method of railway wheel profile with objective function of equivalent conicity considering wheel dimension constraint, two points contact problem between wheel and rail was proposed. New design method shows good results. New wheel profile generated from optimization process shows better dynamic performance compared with initial profile as the purpose of wheel profile design. And to verify the design method with testing the stability of new wheel profile, we conducted a critical speed test for new wheel profile using scale model applied scaling method of railway vehicle dynamics. The result of critical speed test show good agreement with that of numerical analysis. From the above results, it is seen that the design method with objective function of equivalent conicity is feasible and it could be applied to design new wheel profile efficiently.

Anti-Sway Tracking Control of Container Cranes with Friction Compensation (마찰 보상을 갖는 컨테이너 크레인의 흔들림 억제 추종 제어)

  • Baek, Woon-Bo;Shin, Jin-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.878-884
    • /
    • 2012
  • In this paper, we consider the sway suppression control problem for container cranes with the frictions between the trolley and the rail. If the friction effects in the system can be modelled, there is an improved potential to design controllers that can cancel the effects. The proposed control improves the trolley positioning and sway suppressing against various frictions. The proposed synthesis combines a variable structure control and the adaptive control to cope with various frictions including the unknown constants. First, the variable structure control with the simple switching action is designed, which is based on a class of feedback lineariztion methods for the fast stabilization of the under-actuated sway dynamics of container. Second, the adaptive control with a parameter estimation is designed, which is based on Lyapunov stability methods for suppressing the oscillation of the trolley travelling, especially due to Coulomb friction in the vicinity of the target position. The asymptotic stability of the overall closed-loop system is assured irrespective of variations of rope length. Simulation are shown under initial sway, external wind disturbances, and various frictions.