• 제목/요약/키워드: Rail strain monitoring

검색결과 13건 처리시간 0.024초

Continuous deformation measurement for track based on distributed optical fiber sensor

  • He, Jianping;Li, Peigang;Zhang, Shihai
    • Structural Monitoring and Maintenance
    • /
    • 제7권1호
    • /
    • pp.1-12
    • /
    • 2020
  • Railway tracks are the direct supporting structures of the trains, which are vulnerable to produce large deformation under the temperature stress or subgrade settlement. The health status of track is critical, and the track should be routinely monitored to improve safety, lower the risk of excess deformation and provide reliable maintenance strategy. In this paper, the distributed optical fiber sensor was proposed to monitor the continuous deformation of the track. In order to validate the feasibility of the monitoring method, two deformation monitoring tests on one steel rail model in laboratory and on one real railway tack in outdoor were conducted respectively. In the model test, the working conditions of simply supported beam and continuous beam in the rail model under several concentrated loads were set to simulate different stress conditions of the real rail, respectively. In order to evaluate the monitoring accuracy, one distributed optical fiber sensor and one fiber Bragg grating (FBG) sensor were installed on the lower surface of the rail model, the strain measured by FBG sensor and the strain calculated from FEA were taken as measurement references. The model test results show that the strain measured by distributed optical fiber sensor has a good agreement with those measured by FBG sensor and FEA. In the outdoor test, the real track suffered from displacement and temperature loads. The distributed optical fiber sensor installed on the rail can monitor the corresponding strain and temperature with a good accuracy.

Distributed optical fiber sensors for integrated monitoring of railway infrastructures

  • Minardo, Aldo;Coscetta, Agnese;Porcaro, Giuseppe;Giannetta, Daniele;Bernini, Romeo;Zeni, Luigi
    • Structural Monitoring and Maintenance
    • /
    • 제1권2호
    • /
    • pp.173-182
    • /
    • 2014
  • We describe the application of a distributed optical fiber sensor based on stimulated Brillouin scattering, as an integrated system for safety monitoring of railway infrastructures. The strain distribution was measured statically and dynamically along 60 meters of rail track, as well as along a 3-m stone arch bridge. We show that, gluing an optical fiber along the rail track, traffic monitoring can be performed in order to identify the train passage over the instrumented sector and determine its running conditions. Furthermore, dynamic and static strain measurements on a rail bridge are reported, aimed to detect potential structural defects. The results indicate that distributed sensing technology represents a valuable tool in railway traffic and safety monitoring.

광섬유센서를 이용한 열차하중 작용시 레일의 변형을 모니터링 (Strain monitoring of the rail during train loading condition using optical fiber sensor)

  • 윤혁진;송광용;김대상;김기환;김정석;권태수;나희승
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1514-1518
    • /
    • 2009
  • Recently, railroad construction has been increased all over the world and as the train is getting high-speeded, there has been a need for guaranteed safety, so that a requirement for heath monitoring techniques for destruction that generated by gradually accumulated damages is now increasing. Especially the rail is crucial part that contact with wheel directly and delivers the train's load to a sleeper. It needs a technique that can guarantee a safety by sensing the possible cracks. In this paper, when train's load applied to the rail, strain distribution that introduced to entire length of rail is monitored using optical fibre. Optical fibre is used as a medium for measuring the strain and BOCDA (Brillouin Optical Correlation Domain Analysis) system is organized for measuring the distributed variation that implied to optical fibre. Optical fibre is attached at lower flange where tension is maximized when the load of train applied to the rail and strain gauge is implied together to compare the accuracy of measurement.

  • PDF

Wheel tread defect detection for high-speed trains using FBG-based online monitoring techniques

  • Liu, Xiao-Zhou;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • 제21권5호
    • /
    • pp.687-694
    • /
    • 2018
  • The problem of wheel tread defects has become a major challenge for the health management of high-speed rail as a wheel defect with small radius deviation may suffice to give rise to severe damage on both the train bogie components and the track structure when a train runs at high speeds. It is thus highly desirable to detect the defects soon after their occurrences and then conduct wheel turning for the defective wheelsets. Online wheel condition monitoring using wheel impact load detector (WILD) can be an effective solution, since it can assess the wheel condition and detect potential defects during train passage. This study aims to develop an FBG-based track-side wheel condition monitoring method for the detection of wheel tread defects. The track-side sensing system uses two FBG strain gauge arrays mounted on the rail foot, measuring the dynamic strains of the paired rails excited by passing wheelsets. Each FBG array has a length of about 3 m, slightly longer than the wheel circumference to ensure a full coverage for the detection of any potential defect on the tread. A defect detection algorithm is developed for using the online-monitored rail responses to identify the potential wheel tread defects. This algorithm consists of three steps: 1) strain data pre-processing by using a data smoothing technique to remove the trends; 2) diagnosis of novel responses by outlier analysis for the normalized data; and 3) local defect identification by a refined analysis on the novel responses extracted in Step 2. To verify the proposed method, a field test was conducted using a test train incorporating defective wheels. The train ran at different speeds on an instrumented track with the purpose of wheel condition monitoring. By using the proposed method to process the monitoring data, all the defects were identified and the results agreed well with those from the static inspection of the wheelsets in the depot. A comparison is also drawn for the detection accuracy under different running speeds of the test train, and the results show that the proposed method can achieve a satisfactory accuracy in wheel defect detection when the train runs at a speed higher than 30 kph. Some minor defects with a depth of 0.05 mm~0.06 mm are also successfully detected.

고속철도 시운전시험 및 평가용 측정시스템 개발(I) - 하드웨어 (Development of Measuring System for On-Line Test and Evaluation of High Speed Rail(I) - Hardware)

  • 김석원;김영국;백광선;김진환;한영재
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.168-173
    • /
    • 2002
  • In this paper, we introduce the hardware of the measuring system for on-line test and evaluation of high speed rail. It is composed of 6 DAMs(Data Aquisition modules), 2 monitoring modules and 1 main computer. Each of DAMs is connected many kinds of sensors, such as accelerometers, thermocouples, strain gauges, volt meters, current meter, odermeter, and measures the signals from sensors, saves it and displays it on the displayer. Two monitoring modules monitor the major signals transferred from DAMs. A main computer controls 4 DAMs(DAM1, DAM2, DAM31 and DAM32) and 2 monitoring modules and also monitors the major signals transferred from DAMs.

  • PDF

첨단계측센서를 이용한 철도 구조물의 모니터링 (Railway structure health monitoring using innovative sensing technologies)

  • 이규완;정성훈;박은용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.772-777
    • /
    • 2008
  • Recent development of fiber optic sensors and wireless sensor technology, made structural health monitoring of railway structures cost effective. In this paper, a micro bending fiber optic rail pad sensors are evaluated for train axle force measurement. In order to assess the usability of FBG fiber optic sensors for short-term bridge measurement, the FBG sensors and conventional strain gauges are installed at the same points and the strain results are compared. Also the impact factors are calculated using the FBG strain responses and the results are compared with the conventional sensor responses. A running KTX train was instrumented with wireless sensor system to measure the vibration characteristics and the results are compared with conventional wire sensor system.

  • PDF

열차 주행평가를 위한 윤중, 횡압 측정 방법의 검토 (Review of Wheel and Lateral Force at Rail for Train running performance)

  • 최찬용;엄기영;배재훈;김상수;유충현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.113-118
    • /
    • 2009
  • It is of utmost important that track loads at rail induced by running train was usually obtained for track performance evaluation. A reaction force of track was measured wheel loads and lateral force by strain gauges on the rail, and then it was obtained to derailment coefficient and variational ratio of wheel load from its relationship. In this study, a existing monitoring system methods with many manpower working were reviewed about measurements, process of testing, and how to obtain accurately measured data.

  • PDF

광섬유 센서를 이용한 온도 및 변형 모니터링에 대한 현장응용 사례 (Case Studies on Distributed Temperature and Strain Sensing(DTSS) by using an Optical fiber)

  • 김중열;김유성;이성욱;민경주;박동수;방기성;김강식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.86-95
    • /
    • 2006
  • Brillouin backscatter is a type of reflection that occurs when light is shone into an optical fibre. Brillouin reflections are very sensitive to changes in the fibre arising from external effects, such as temperature, strain and pressure. We report here several case studies on the measurement of strain using Brillouin reflections. A mechanical bending test of an I beam, deployed with both fiber optic sensors and conventional strain gauge rosettes, was performed with the aim of evaluating: (1) the capability and technical limit of the DTSS technology for strain profile sensing; (2) the reliability of strain measurement using fiber optic sensor. The average values of strains obtained from both DTSS and strain gauges (corresponding to the deflection of I beam) showed a linear relationship and an excellent one-to-one match. A practical application of DTSS technology as an early warning system for land sliding or subsidence was examined through a field test at a hillside. Extremely strong, lightweight, rugged, survivable tight-buffered cables, designed for optimal strain transfer to the fibre, were used and clamped on the subsurface at a depth of about 50cm. It was proved that DTSS measurements could detect the exact position and the progress of strain changes induced by land sliding and subsidence. We also carried out the first ever distributed dynamic strain measurement (10Hz) on the Korean Train eXpress(KTX) railway track in Daejeon, Korea. The aim was to analyse the integrity of a section of track that had recently been repaired. The Sensornet DTSS was used to monitor this 85m section of track while a KTX train passed over. In the repaired section the strain increases to levels of 90 microstrain, whereas in the section of regular track the strain is in the region of 30-50 microstrain. The results were excellent since they demonstrate that the DTSS is able to measure small, dynamic changes in strain in rails during normal operating conditions. The current 10km range of the DTSS creates a potential to monitor the integrity of large lengths of track, and especially higher risk sections such as bridges, repaired track and areas at risk of subsidence.

  • PDF

Condition monitoring and rating of bridge components in a rail or road network by using SHM systems within SRP

  • Aflatooni, Mehran;Chan, Tommy H.T;Thambiratnam, David P.
    • Structural Monitoring and Maintenance
    • /
    • 제2권3호
    • /
    • pp.199-211
    • /
    • 2015
  • The safety and performance of bridges could be monitored and evaluated by Structural Health Monitoring (SHM) systems. These systems try to identify and locate the damages in a structure and estimate their severities. Current SHM systems are applied to a single bridge, and they have not been used to monitor the structural condition of a network of bridges. This paper propose a new method which will be used in Synthetic Rating Procedures (SRP) developed by the authors of this paper and utilizes SHM systems for monitoring and evaluating the condition of a network of bridges. Synthetic rating procedures are used to assess the condition of a network of bridges and identify their ratings. As an additional part of the SRP, the method proposed in this paper can continuously monitor the behaviour of a network of bridges and therefore it can assist to prevent the sudden collapses of bridges or the disruptions to their serviceability. The method could be an important part of a bridge management system (BMS) for managers and engineers who work on condition assessment of a network of bridges.

Damage identification in a wrought iron railway bridge using the inverse analysis of the static stress response under rail traffic loading

  • Sidali Iglouli;Nadir Boumechra;Karim Hamdaoui
    • Smart Structures and Systems
    • /
    • 제32권3호
    • /
    • pp.153-166
    • /
    • 2023
  • Health monitoring of civil infrastructures, in particular, old bridges that are still in service, has become more than necessary, given the risk that a possible degradation or failure of these infrastructures can induce on the safety of users in addition to the resulting commercial and economic impact. Bridge integrity assessment has attracted significant research efforts over the past forty years with the aim of developing new damage identification methods applicable to real structures. The bridge of Ouled Mimoun (Tlemcen, Algeria) is one of the oldest railway structure in the country. It was built in 1889. This bridge, which is too low with respect to the level of the road, has suffered multiple shocks from various machines that caused considerable damage to its central part. The present work aims to analyze the stability of this bridge by identifying damages and evaluating the damage rate in different parts of the structure on the basis of a finite element model. The applied method is based on an inverse analysis of the normal stress responses that were calculated from the corresponding recorded strains, during the passage of a real train, by means of a set of strain gauges placed on certain elements of the bridge. The results obtained from the inverse analysis made it possible to successfully locate areas that were really damaged and to estimate the damage rate. These results were also used to detect an excessive rigidity in certain elements due to the presence of plates, which were neglected in the numerical reference model. In the case of the continuous bridge monitoring, this developed method will be a very powerful tool as a smart health monitoring system, allowing engineers to take in time decisions in the event of bridge damage.