• Title/Summary/Keyword: Rail vibration

Search Result 416, Processing Time 0.026 seconds

Continous rail absorber design using decay rate calculation in FEM

  • Molatefi, Habibollah;Izadbakhsh, Soroush
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.455-466
    • /
    • 2013
  • In recent years, many countries have added railway noise to the issues covered by noise regulations. It is known that the rail is the dominant source of rolling noise at frequency range of 500Hz-2000Hz for the conventional speeds (<160km/h). One of the effective ways to reduce noise from railway track is using a rail vibration absorber. To study the acoustic performance of rail absorber, the decay rates of vibration have long been used by researcher. In this paper, A FE model of a periodic supported rail with infinite element in ABAQUS is developed to study the acoustic performance of the rail absorber. To compute the decay rates, acceleration responses along the rail transferred to MATLAB to obtain response levels in frequency domain and then by processing the response levels, the decay rates obtained for each1/3octav band. Continous rail absorber is represented by a steel layer and an elastomer layer. The decay rates for conventional rail and rail with one-side absorber and also, the rail with two side absorber are obtained and compared. Then, to improve the system of rail absorber, a steel plate with elastomer layer is added to bottom of the rail foot. The vertical decay rate results show that the decay rate of rail vibration along the track is significantly increased around the tuned frequency of the absorber and thus the rail vibration energy is substantially reduced in the corresponding frequency region and also effective in rail noise reduction.

Application of High Damping Alloys for Vibration Reduction in Rail Joint Bar (방진합금을 적용한 철도레일 이음매판의 진동저감 효과에 관한 연구)

  • Baik, S.H.;Kim, J.C.;Han, D.W.;Baik, J.H.;Kim, T.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.570-573
    • /
    • 2004
  • Conventional methods for reducing vibration in engineering designs may be undesirable in conditions where size or weight must be minimized, or where complex vibration spectra exist. Some alloys with a combination of high damping capacity and good mechanical properties can provide attractive techanical and economical solutions to problems involving seismic, shock and vibration isolation. In this paper, it showed the noise and vibration characteristic was compared conventional rail joint to improved rail joint(damping alloy) for reducing noise and vibration. Its applicability to rail joint is discussed.

  • PDF

Dynamic Response and Vibration Characteristics of an Isolation Rail Track under a Traveling Mass (주행질량하의 방진 궤도레일의 동적응답 및 진동특성)

  • Oh, B.J.;Ryu, B.J.;Kim, J.H.;Lee, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.365-373
    • /
    • 2011
  • This paper presents the dynamic response and the vibration characteristics for a rail-track supported by discrete springs and dampers. Recently, automatic conveyer system, rail-track, rack-master system demand the soundproof facilities and vibration suppression measures in order to satisfy the strict environmental standards. The equations of motions of the dynamic characteristics for a vibration suppression rail-track under a traveling mass were derived by Galerkin's mode summation method considering gravity, centrifugal force, Coriolis force, inertia force of the moving mass, transverse inertia of the rail-track. Also, numerical results were calculated by Runge-Kutta integration method. In order to investigate vibration characteristics and dynamic responses, modal testing and measurement of the responses of the rail-track were performed. Through the experiment and numerical simulations, numerical results have a good agreement with experimental ones.

Vibration Analysis on Rolling Stock running in Rail Head Surface Irregularity (레일두부 표면요철에 의한 열차주행 시 진동발생에 대한 분석)

  • Lee, Sang-Bae;Lee, Sung-Uk;Woo, Byong-Ku
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.988-991
    • /
    • 2006
  • Rolling Stock running are making Rail Head Surface damage(corrugation, flaking, shelling, etc). It's coming out Rail Head Surface Irregularity. It increases Rolling Stock and structure vibration. Therefore, this paper analyzes the influence of Rail Head Surface Irregularity to railway vibration. And, It introduces the management method of Rail Head Surface and proposes its R&D direction in railway-run organization.

  • PDF

Characteristics of Vibration and Sound Radiated from Rails of Concrete Slab Tracks for Domestic High Speed Trains (국내 고속 철도 콘크리트 슬라브 궤도의 진동 및 방사 소음 해석)

  • Ryue, Jungsoo;Jang, Seungho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.605-616
    • /
    • 2013
  • An important source of noise from railways is rolling noise caused by wheel and rail vibrations induced by acoustic roughness at the wheel-rail contact. In the present paper, characteristics of rail vibration and radiated sound power from concrete slab tracks for domestic high speed train(KTX) is investigated by means of a numerical method. The waveguide finite element and boundary element are combined and applied for this analysis. The concrete slab track is modelled simply with a rail and rail pad regarding the concrete slab as a rigid ground. The wave types which contribute significantly to the rail vibration and radiated noise are identified in terms of the mobility and decay rates. In addition, the effect of the rail pad stiffness on the radiated power is examined for two different rail pad stiffnesses.

Prediction of Rolling Noise of Korean Train Express Using FEM and BEM (FEM과 BEM을 이용한 한국형 고속전철의 전동소음 예측)

  • 김관주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.555-564
    • /
    • 2001
  • Wheel-rail noise is normally classified into three catagories : rolling, squeal and impact noise. In this paper, rolling noise caused by the irregularity between a wheel and rail is analysed as follows: The irregularity between the wheel and rail is assumed as combination of sinusoidal profiles. Wheel-rail contact stiffness is linearized by using Hertzian contact theory, and then contact force between the wheel and rail is calculated. Vibration of the rail and wheel is calculated theoretically by receptance method or FEM depending on the geometry of wheel or rail for the frequency range of 100-5000Hz, important for noise generation. The radiation caused by those vibration is computed by BEM. To verify this analysis tools, rolling noise is calculated by preceding analysis steps using typical roughness data and it is compared with experimental rolling noise data. This analysis tools show reasonable results and used for the prediction of KTX rolling noise.

  • PDF

Vibration Reduction Effect of the Continuously Welded Rail (장대레일의 진동저감효과에 관한 연구)

  • 황선근;엄기영;고태훈
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.119-125
    • /
    • 2000
  • In this study, field measurements and analysis of vibration before and after the installation of continuously welded rail were performed. The vibration data obtained at the same locations before and after were analyzed to find out the characteristics of vibration level. The component of train-induced impulsive vibration at the rail joints varies depending upon the distance from the source, however mostly low frequency vibration which propagates long distance causes the problems of vibration. Even though it is expected that there may be certain degree of discrepancy in the amount of reduction in vibration depending upon site ground conditions, it was found that installation of continuously welded rail shows reduction in train-induced vibration.

  • PDF

Prediction of vibration and noise from steel/composite bridges based on receptance and statistical energy analysis

  • Liu, Quanmin;Liu, Linya;Chen, Huapeng;Zhou, Yunlai;Lei, Xiaoyan
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.291-306
    • /
    • 2020
  • The noise from the elevated lines of rail transit has become a growing problem. This paper presents a new method for the rapid prediction of the structure-borne noise from steel or composite bridges, based on the receptance and Statistical Energy Analysis (SEA), which is essential to the study of the generation mechanism and the design of a low-noise bridge. First, the vertical track-bridge coupled vibration equations in the frequency domain are constructed by simplifying the rail and the bridge as an infinite Timoshenko beam and a finite Euler-Bernoulli beam respectively. Second, all wheel/rail forces acting upon the track are computed by taking a moving wheel-rail roughness spectrum as the excitation to the train-track-bridge system. The displacements of rail and bridge are obtained by substituting wheel/rail forces into the track-bridge coupled vibration equations, and all spring forces on the bridge are calculated by multiplying the stiffness by the deformation of each spring. Then, the input power to the bridge in the SEA model is derived from spring forces and the bridge receptance. The vibration response of the bridge is derived from the solution to the power balance equations of the bridge, and then the structure-borne noise from the bridge is obtained. Finally, a tri-span continuous steel-concrete composite bridge is taken as a numerical example, and the theoretical calculations in terms of the vibration and noise induced by a passing train agree well with the field measurements, verifying the method. The influence of various factors on wheel/rail and spring forces is investigated to simplify the train-track-bridge interaction calculation for predicting the vibration and noise from steel or composite bridges.

Running characteristics of rubber-tired AGT light rail vehicle (고무차륜 AGT 경량전철 차량의 주행특성 해석)

  • 김연수;백남욱;임태건
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.273-276
    • /
    • 2004
  • Dynamic model of the Korea standardized rubber-tired AGT light rail vehicle, and boundary conditions between vehicle and infrastructures (running track, guidance rail) were defined to analyze vehicular vibration behaviors occurred at the worst condition for straight running track. Using the commercialized software RecurDyn, resultant forces and vibration accelerations of car body and bogies were analyzed. Based on the Korea performance test criteria for urban transit, vertical and lateral vibration of car body were calculated and evaluated as wearing condition of guide wheels. And resultant forces between bogie guidance frame and guide rail in straight running track were analyzed. As the results, the Korea standardized rubber-tired AGT light rail vehicle satisfied the performance criteria and design requirement .

  • PDF

Study on the Shape Review of Rail Web-damper for Simulation of Rail Vibration Mode (레일 진동모드 해석을 통한 레일 웹댐퍼 형상 검토에 관한 연구)

  • Kim, Jin-Ho;Kim, Kyoung-Min;Lee, Kwang-Do
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2866-2869
    • /
    • 2011
  • Concrete track to increase R&D compared to the existing gravel track 3dB(A) over the growing problem of noise has been raised. Accordingly, the noise reduction solutions for reducing the vibration of the rail that you want to reduce the noise of the concept is to develop the rail web-damper. For this purpose, first, that occurs while driving the train to simulate the vibration modes of rail vibration part of the main draw for this part of the effective vibration reduction to be made, a review of various shapes to try.

  • PDF