• Title/Summary/Keyword: Rainfall ranges

Search Result 82, Processing Time 0.02 seconds

Monitoring Pollutants Occurred by Non Point Sources - Rainfall Runoff from Cultivated Lands for a Sweet Potato and a Cherry Tree - (비점오염원에서 발생하는 오염물질 모니터링 - 고구마·벚나무경작지의 강우유출수를 대상으로 -)

  • Choi, Byoungwoo;Kang, Meea
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • The management of non point sources was marked by the need for clean water environments. It was proposed the fundamentals to promote the reasonable land management in this study. We monitored rainfall events at two non point sources with different crop cultivations such as a sweet potato and a cherry tree for three years. Because the most important factor was rainfall, the rainfall runoff and pollutant loads were generated 100% in the case of rainfall ranges with 50 < rainfall (mm). However the frequency of rainfall runoff was interacted with the crop cultivation and soil characteristics in the case of rainfall ranges such as 30 < rainfall (mm) ${\leq}50^a$ and 10 < rainfall (mm) ${\leq}30^b$. The frequency of rainfall runoff was a : 60% and b : 5% in the cherry tree cultivation with growing significantly and pollutant loads were lower than that of the sweet potato cultivation. Meanwhile the frequency of rainfall runoff was a : 60% and b : 5% in the sweet potato cultivation.

Determination of EMCs for Rainfall Ranges from Transportation Landuses (교통관련 토지이용에서의 강우계급별 EMC 산정)

  • Lee, So-Young;Maniquiz, Marla C.;Choi, Ji-Yeon;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.67-76
    • /
    • 2009
  • The contribution of pollutant loadings from non-point source (NPS) to the four major rivers in Korea exceeded 22~37 % of the total loadings in 2004 and is expected to reach 60 % in 2020. Most of NPS loadings are coming from urban areas, especially from paved areas. Because of high imperviousness rate, many types of NPS pollutant are accumulating on the surface during dry periods. The accumulated pollutants are wash-off during a storm and highly degrading the water quality of receiving water bodies. For this reason, the Korean Ministry of Environment (MOE) developed the Total Maximum Daily Load (TMDL) program to protect the water quality by managing the point source and NPS loadings. NPS has high uncertainties during a storm because of the characteristics of rainfall and watershed areas. The rainfall characteristics can affect on event mean concentrations (EMCs), mass loadings, flow rate, etc. Therefore, this research was performed to determine EMCs for rainfall ranges from transportation landuses such as road and parking lot. Two sites were monitored over 45 storm events during the 2006/06 through 2008/10 storm seasons. Mean TSS EMCs decrease as rainfall ranges increase and highest at less than 10mm rainfall. The results of this study can be used to determine the efficient scale of BMP facility considering specific rainfall range.

  • PDF

Proposed One-Minute Rain Rate Conversion Method for Microwave Applications in Korea

  • Shrestha, Sujan;Choi, Dong-You
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.3
    • /
    • pp.153-162
    • /
    • 2016
  • Microwave and millimeter waves are considered suitable frequency ranges for diverse applications. The prediction of rain attenuation required the 1-min rainfall rate distribution, particularly for data obtained locally from experimental measurement campaigns over a given location. Rainfall rate data acquired from Korea Meteorological Administration (KMA) for nine major sites are analyzed to investigate the statistical stability of the cumulative distribution of rainfall rate, as obtained from a 10-year measurement. In this study, we use the following rain rate conversion techniques: Segal, Burgueno et al., Chebil and Rahman, exponential, and proposed global coefficient methods. The performance of the proposed technique is tested against that of the existing rain rate conversion techniques. The nine sites considered for the average 1-min rain rate derivation are Gwangju, Daegu, Daejeon, Busan, Seogwipo, Seoul, Ulsan, Incheon, and Chuncheon. In this paper, we propose a conversion technique for a suitable estimation of the 1-min rainfall rate distribution.

A Classification of Rainfall Regions in Pakistan (파키스탄의 강수지역 구분)

  • Hussain, Mian Sabir;Lee, Seung-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.5
    • /
    • pp.605-623
    • /
    • 2009
  • This study is aimed to classify rainfall regions in Pakistan. Classification of rainfall regions is essential to understand rainfall patterns in Pakistan. Rainfall patterns have been investigated using a factor and cluster analysis technique by 10-days rainfall parameter. The data used here have been obtained from 32 specific weather stations of PMD (Pakistan Meteorological Department) for the period of January 1980 to December 2006. The results obtained from factor analysis provide three factors and these three factors accounts for 94.60% of the total variance. For a better understanding of rainfall regions, cluster analysis method has been applied. The clustering procedure is based on the Wards method algorithm. Overall, these rainfall regions have been divided into six groups. The boundary of the region is determined by the topology such as Baluchistan plateau, Indus plain, Hindu Kush and Himalaya ranges.

Study on the Discharge Characteristics of Non-point Pollutant Source in the Farming Area (농촌지역의 비점오염원 유출 특성에 관한 연구)

  • Gil, Kyung-Ik;Lee, Byung-Soo;Lee, Sang-Soo;Park, Moo-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.783-786
    • /
    • 2008
  • The main goal of this study is to understand the effects of direct-runoff of chemistry and organic fertilizers which are adsorbing to sediment from farmland and non-point source discharge characteristics which are discharged to stream with soil erosion when rainfalls. pollutographs of TSS, BOD, COD, TN, and TP were measured for 10 rainfall events at watershed. EMC (Event Mean Concentration) were calculated for each rainfall event using quality and quantity measured. The result shows that the EMC ranges of 95% confidence intervals are 50.5-203 mg/L for TSS, 0.8-14.2 mg/L for $BOD_5$, 4.2-20.7 mg/L for $COD_{Mn}$, 0.2-0.5 mg/L for TP, 2.4-4.5 mg/L for TN, 1.36-3.04 mg/L for NO3--N, 0.13-0.42 mg/L for NH4+-N and 0.82-1.77 mg/L for TKN.

  • PDF

Gauging the climate-associated risks for paddy water management based on reservoir performance indices

  • Ahmad, Mirza Junaid;Cho, Gun-ho;Choi, Kyung-sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.515-515
    • /
    • 2022
  • Climate change is strongly threatening the performance of agricultural reservoirs, which are instrumental in ensuring uninterrupted water supplies for rice cultivation in Korea. In this study, various performance indices were derived and overall sustainability of the 400 agricultural reservoirs was evaluated in the context of climate change trends during 1973-2017. Rice crop evapotranspiration, irrigation water requirements, runoff generation in the upstream watershed, and volumetric evaporation losses were plugged into a water balance model to simulate the reservoir operation during the study period. Resilience, reliability, and vulnerability are the three main indicators of reservoir performance, and these were combined into a single sustainability metric to define the overall system credibility. Historical climate data analysis confirmed that the country is facing a gradual warming shift, particularly in the central and southern agricultural regions. Although annual cumulative rainfall increased over the last 45 years, uneven monthly rainfall distribution during the dry and wet seasons also exacerbated the severity and frequency of droughts/floods. For approximately 85% of the selected reservoirs, the sustainability ranged between 0.35 to 0.77, and this range narrowed sharply with time, particularly for the reservoirs located in the western and southern coast regions. The study outcomes could help in developing the acceptable ranges of the performance indices and implementing appropriate policy and technical interventions for improving the sustainability of reservoirs with unacceptable ranges of the performance indices.

  • PDF

Characteristics of Runoff Load from Nonpoint Source Pollutants in the Lake Doam Watershed (도암호 유역에서 비점오염물질의 유출부하 특성)

  • Kwak, Sungjin;Bhattrai, Bal Dev;Gim, Giyoung;Kang, Phil-Goo;Heo, Woomyung
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.135-147
    • /
    • 2018
  • In order to investigate the runoff characteristics of nonpoint source pollutants in the Lake Doam watershed, water quality and flow rate were monitored for 38-rainfall events from 2009 to 2016. The EMC values of SS, COD, TN and TP were in the range of 33~2,169, 3.5~56.9, 0.09~7.65 and $0.06{\sim}2.21mg\;L^{-1}$, respectively. As a result of analyzing the effect of rainfall factor on the nonpoint source pollutant load, EMCs of SS, COD and TP showed a statistically significant correlation with rainfall (RA) (p<0.01) and SS showed highly significant correlation with maximum rainfall intensity (MRI, R=0.48). The load ranges of SS, COD, TN and TP were 10.4~11,984.6, 1.1~724.4, 0.6~51.6 and $0.03{\sim}22.85ton\;event^{-1}$, respectively, showing large variation depending on the characteristics of rainfall events. The effect of rainfall on the load was analyzed. SS, COD and TP showed a positive correlation, but TN did not show any significant correlation. The annual load of SS was the highest with $88,645tons\;year^{-1}$ in 2011 when rainfall was the highest with 1,669 mm. The result of impact analysis of nonpoint source pollution reduction project and land-use change on runoff load showed that pollutant load significantly reduced from 2009 to 2014 but SS and TP loads were increased from 2014 to 2016 due to increase in construction area. Therefore, we suggested that nonpoint source pollution abatement plan should be continued to reduce the soil loss and pollutants during rainfall, and countermeasures to reduce nonpoint source pollution due to construction need to be established.

부산시 동래 온천지역의 양수량, 온천수위, 강수량의 관련성 연구

  • 차용훈;함세영;정재열;장성;손건태
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.455-458
    • /
    • 2004
  • This study uses time series analyses to evaluate fluctuation of water levels in a geothermal water well due to pumping, in relation to rainfall at Dongrae hot-spring site on the southeastern coast of tile Korean peninsula. The volume of water pumped from the public study wells ranges from 542 to 993 m$^3$/month, and the minimum water level ranged from 35 to 144.7 m during the measured period. Autocorrelation analysis was conducted for the withdrawal rate at the public wells, water levels and rainfall. The autocorrelation of the withdrawal rate shows distinct periodicity with 3 months of lag time, the autocorrelation of rainfall shows weak linearity and short memory with 1 months of lag time, and the autocorrelation of water levels shows weak linearity and short memory with 2 months of lag time. The cross-correlation between the pumping volume and the minimum water level shows a maximum value 1 at a delayed time of 34 months. The cross-correlation between rainfall and the minimum water level shows a maximum value of 0.39 at a delayed time of 32 months.

  • PDF

A Study on the Discharge Characteristics of Non-point Pollutant Source in the Agricultural Area of the Kyongan Watershed (경안천 유역 농촌지역의 비점오염원 배출 특성에 관한 연구)

  • Lee, Byung-Soo;Jung, Yong-jun;Park, Moo Jong;Gil, Kyung-Ik
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.169-173
    • /
    • 2008
  • A field monitoring was conducted in order to find out the discharge characteristics of non-point source pollutants in the agricultural area. Event Mean Concentration (EMC) of TSS, $BOD_5$, $COD_{Mn}$, TP, TN was calculated based on the monitoring data of 10 rainfall events at agricultural watersheds. A significant relationship was observed from the correlation between EMCs and rainfall characteristics. The result shows that EMC ranges of 95% confidence intervals were 50.5~203 mg/L for TSS, 0.8~14.2 mg/L for $BOD_5$, 4.2~20.7 mg/L for $COD_{Mn}$, 2.4~4.5 mg/L for TN and 0.2~0.5 mg/L for TP, respectively. The correlation coefficients between TSS and TP and between $BOD_5$ and $COD_{Mn}$ were found to be 0.912 and 0.961. But TN was lower correlated with other EMC factors. It was also found that rainfall characteristics was not correlated with EMCs.

Revision of Agricultural Drainage Design Standards (농업생산기반정비사업 계획설계기준 배수편 개정)

  • Kim, Kyoung Chan;Kim, Younghwa;Song, Jaedo;Chung, Sangok
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.32-44
    • /
    • 2014
  • In Korea, global warming caused by the climate changes impacted on weather system with increase in frequency and intensity of precipitation, and the rainfall pattern changes significantly by regional groups. Furthermore, it is expected that the regional and annual fluctuation ranges of the rainfall in the future would be more severe. Nowadays, agricultural drainage system designed by the existing standard of 20-year return period and 2 days of fixation time cannot deal with the increment rainfall such as localized heavy rain and local torrential rainfalls. Therefore, it is required to reinforce the standard of the drainage system in order to reduce the agricultural flood damage brought by unusual weather. In addition, it is needed to improve the standard of agricultural drainage design in order to cultivate farm products in paddy fields as facility vegetable cultivation and up-land field crop have been damaged by the moisture injury and flooding. In order to prepare for the changes of rainfall pattern due to climate changes and improve the agricultural drainage design standards by the increase of cultivating farm products, the purpose of this study is to examine the impact of climate changes, the changes of relative design standard, and the analytic situation of agricultural flood damages, to consider the drainage design standard revision, and finally to prepare for enhanced agricultural drainage design standards.

  • PDF