• Title/Summary/Keyword: Rapid transit railroad

Search Result 65, Processing Time 0.036 seconds

Tunnel Blast Design for Earthquake Accelerometer Installed Rapid Transit Railroads (지진가속도계가 설치된 고속철도 터널 인근의 발파설계)

  • Lee, Jong-Woo;Kim, Nam-Soo;Jung, Sang-Jun;Park, Chi-Myeon
    • Explosives and Blasting
    • /
    • v.32 no.1
    • /
    • pp.18-22
    • /
    • 2014
  • KoRail establishes "Guideline for earthquake acceleration measuring instrument and operation." and applies the management of the rapid transit railroad. KoRail manages the trains by train driving patterns subjected to the train operating know-how for the safety against the earthquake hazards. This paper introduces the case studies on bench blast and tunnel blast designs considering a rapid transit railroad.

Demand and Schedule Operation Mode for Personal Rapid Transit

  • Hwang, Jong-Gyu;Kim, Baek-Hyun;Kang, Seok-Won;Jeong, Rak Gyo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.356-360
    • /
    • 2013
  • The PRT (Personal Rapid Transit) system is a new transportation system in accordance with the requirements of the passengers. Although this PRT system was proposed a long time ago, it did not hold the limelight due to the several limitations in technology. However, the research and development has been active again recently thanks to the development in technology and the review on its applicability as the means of transportation linking to the urban transit system. Although most of these recent studies in relation to the PRT are focused on the hardware such as PRT vehicles or track structures, etc., the operational aspect of it is more important than that of any other means of public transportation. Therefore, among studies on operational aspect of this PRT system, this paper shows the result of study on technology in relation to the movement of vehicle to the station where it was called by the passenger through interface of the wayside control center with the vehicle control system in case where the passenger calls a vehicle at the station.

A Study on Optimal Horizontal Alignment Design for PRT Vehicle (PRT 주행선로 최적평면선형 설계에 관한 연구)

  • Um, Ju-Hwan;Kim, Baek-Hyun;Jeong, Rag-Gyo;Kang, Seok-Won;Byun, Yeun-Sub
    • Journal of Digital Convergence
    • /
    • v.12 no.10
    • /
    • pp.283-289
    • /
    • 2014
  • Personal rapid transit(PRT) systems have been highlighted in future transportation developments as a result of their potential as sustainable and eco-friendly transport solutions that provide demand-responsive mobility services. One of the most important characteristics of the personal rapid transit system(PRT) is that it can be constructed and operated at a low cost. A fundamental study on the alignment of the PRT guideway considering running stability was conducted in the present study. In addition, a parameter analysis of the major alignment design variables such as curve radius, transition curve length and cant was performed by vehicle dynamic analysis and optimum guideway alignments were proposed. The analysis results suggested that the theoretical values were satisfied and also confirmed the possibility of reducing the standard.

STUDY ON THE PREVENTION METHOD FOR HEAT ACCUMULATION FOR PERSONAL RAPID TRANSIT (PRT) VEHICLE UNDER BODY (PRT 차량하부 열부하 저감방안 도출 연구)

  • Kwon, S.B.;Song, J.H.;Kang, S.W.;Jeong, R.G.;Kim, H.B.;Lee, C.H.;Seo, D.K.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.58-62
    • /
    • 2013
  • Personal Rapid Transit (PRT) is the emerging personal transport vehicle operating on the loop automatically. The PRT system utilize the electrical power from super capacity or battery, it is important to manage the power or energy. In this regards, the management of high temperature occurred by the operation of system is significantly important to prevent from serious damage of component. In this study, we studied the adequate shape of underbody which can reduce the heat accumulation by pickup coil and condenser using natural air cooling. We suggested the additional air pathway, air inlet and flow separator to decrease the temperature of the heat source components. It was found that suggested system can decrease the temperature of PRT under body by 16% during the static mode and by 10% during the running mode at 30km/h. It is expected that the findings of this study will feed into final design of newly built Korean PRT vehicle.

A Dispatching and Routing Algorithm for Personal Rapid Transit by Considering Congestion (정체를 고려한 Personal Rapid Transit 배차 및 경로 계획 알고리즘)

  • Han, Chung-Kyun;Kim, Baek-Hyun;Jeong, Rag-Gyo;Ha, Byung-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1578-1586
    • /
    • 2015
  • Personal rapid transit (PRT) is getting attention as a new form of transportation. It is energy efficient and provides the high level of passenger service. In this study, the dynamic PRT dispatching and routing problem is dealt with. Passengers request transportation service on a complex network, and an operating system monitors passenger arrivals and coordinates vehicles in real time. A new online dispatching and routing algorithm is proposed, which minimizes the total travel distance of vehicles and the waiting time of passengers. The algorithm dispatches vehicles by considering multiple vehicles' state and multiple passengers at the same time. In particular, finding the shortest-time path is attempted by taking into account the future congestion on lanes. Discrete-event simulation is employed to validate the performance of the proposed algorithm. The results show the algorithm in this study outperforms others.

Analysis of Acceleration and Deceleration on High Performance Train for A Metropolitan Rapid Transit System (대피선 최소화를 고려한 광역·도시철도 급행화를 위한 고성능 열차 가감속도 분석)

  • KO, Kyeong Jun;KIM, Jung Tai;KIM, Moo Sun;JANG, Dong Uk;HONG, Jae Sung;RYU, Sang Hwan;JUNG, Jong Deok
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.6
    • /
    • pp.564-574
    • /
    • 2015
  • As shown by the popularity of the rapid train in the Seoul Metro Line No. 9, the demand for the rapidization of the metro transit has been continuously increased. However, it needs tremendous cost to construct new additional infrastructures to the existing line for the rapidization. In order to overcome the problem, utilizing the existing infrastructures such as crossing tracks as railroad sidetracks can be considered to be a good method of reducing the cost. In this case, there is a way exploiting the existing train as an express train and the advanced train, which increases both acceleration and deceleration, as a local train, but achievable acceleration and deceleration have not been analyzed rigorously. In this paper, we analyze feasible ranges and optimal values of both acceleration and deceleration of the advanced train analytically when we consider the rapidization of the metro transit utilizing the existing infrastructures and verify the results in Seoul Metro Line No. 3. Simulation results show ranges and optimal values of achievable acceleration and deceleration exist when minimum gap between an express train and a local train is smaller than 40 seconds.

Development of an Operation Control System of the Vertical Transferable Korean Personal Rapid Transit (수직이송 서비스가 가능한 한국형 PRT 운행제어시스템 개발)

  • Kim, Baek-Hyun;Um, Ju-Hwan;Jeong, Rag-Gyo;Byun, Yeun-Sub;Kang, Seok-Won
    • Journal of Digital Convergence
    • /
    • v.12 no.10
    • /
    • pp.337-343
    • /
    • 2014
  • The PRT(Personal Rapid Transit) in material or immaterial guided tracks is operated automatically according to the needs of passengers with the optimal non-stop path from the source to the destination. In recent years, the personal rapid transit (PRT) system, which affords superior accessibility and ease of use, has been spotlighted as a new transport system for the future. In this study, a method for vertical lifting of PRT vehicles was proposed to facilitate interlink with other means of transport and thereby improve the efficiency of door-to-door transport. For this purpose, operation control interfaces were designed and experiments were conducted. Programmable Logic Controller (PLC) dedicated for the PRT vertical lift was designed to interface with Operation Control Center (OCC) by Modbus TCP over Ethernet. We implemented a 3D graphical PRT operation simulator which can emulate the mixing operation of the virtual vehicles and the actual vehicles.

Study on the Standard Specification of Linear Induction Motor Type Light Rail Vehicle Electrical Equipment (선형유도모터형식 경전철 전기장치 표준사양 연구)

  • Cho, Hong-Shik;Lee, Ho-Yong;Cho, Bong-Kwan;Hong, Jai-Sung;Ryu, Sang-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1181-1182
    • /
    • 2007
  • Light Rail Transit (LRT) System is an urban transit system which has approximately an intermediate transportation capacity between conventional subway and bus ($5,000{\sim}25,000$ persons per hour and per direction). It is a high-tech system which operational capacity, punctuality and mobility are remarkably improved. There are some types of LRT systems such as monorail, tramway, AGT(Automated Guideway Transit), and so on. The LRT systems have been applied and being operated in about a hundred lines around the world and many projects that apply the LRT systems in Korea are being proceeded and scheduled. For the efficient management, economical construction, and safe operation of various LRT systems, the establishment of national standard is necessary such as vehicle standardized specification, vehicle performance test standard, vehicle safety standard, construction guide, operation regulation, etc. of LRT systems. This paper presents the standard specification of electrical equipment of linear induction motor type light rail vehicle, that is LIM AGT(AGT system propelled with linear induction motor) vehicle. The LIM AGT system has been applied in Japan subway and ART(Advanced Rapid Transit) system of Canada and Yongin LRT is currently under construction.

  • PDF

Signalling System Standardization for Linear Induction Motor Type Light Rail Transit (선형유도모터형식 경전철 신호제어시스템 표준사양 연구)

  • Cho, Bong-Kwan;Hwang, Hyeon-Chyeol;Cho, Hong-Shik;Hong, Jai-Sung;Ryu, Sang-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1183-1184
    • /
    • 2007
  • Light Rail Transit (LRT) is optimized vehicle system for complex urban circumstance. LRT systems have many merits such as improved accuracy and safety. There are many LRT systems such as monorail, tram, automated guideway transit, linear induction motor propulsion and so on. These systems have been operated in Japan and other advanced countries. In Korea, local government has many projects to apply the advanced LRT system. But there are no standards regulation, performance test regulation and construction regulation for monorail system, linear induction motor system and tram in Korea. We expect that standardization brings economical construction and safety. The linear induction motor system has been usually applied to subway in Japan and ART(Advanced Rapid Transit) in Canada. In Korea, the linear induction motor system has been adopted for Yong-In LRT and currently under construction. This paper presents signalling system and TCMS(train control and monitoring system) of linear induction motor system.

  • PDF

A Design of the Evaluation Devices for the Vehicle Operational Control Algorithm of Personal Rapid Transit System (개인고속이동 시스템의 차량운행제어 알고리즘 검증을 위한 모의 장치 설계에 대한 연구)

  • Lee, Jun-Ho;Shin, Kyung-Ho;Kim, Yong-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1191-1192
    • /
    • 2007
  • In this paper we deal with a design of the evaluation system to assess the vehicle operational control algorithm for Personal Rapid Transit(PRT) system. PRT system is different from the conventional rail traffic system in such point that the station is off-line so as to guarantee a very short headway. In this study we propose a evaluation system to assess the performance of the proposed vehicle control algorithm. The evaluation system is composed of virtual vehicles, central control system, virtual wayside facilities, monitoring equipments. In order to test the proposed evaluation system a test algorithm is used, which has been simulated in the combined simulation system between Labview Simulation Interface Toolkit and Matlab/Simulink.

  • PDF