• Title/Summary/Keyword: Rapid-cooling electric arc furnace oxidizing slag

Search Result 4, Processing Time 0.021 seconds

Properties of Mortar according to Gradation change of Electric Arc Furnace Oxidizing Slag Fine Aggregate made by Rapidly Cooled Method (급냉 전기로 산화슬래그 잔골재의 입도 변화에 따른 모르타르의 특성)

  • Kim, Jin-Man;Kwak, Eun-Gu;Choi, Sun-Mi;Kim, Ji-Ho;Lee, Won-Young;Oh, Sang-Youn
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.112-118
    • /
    • 2012
  • Steel industry produces many by-products and wastes such as blast furnace slag, electric arc furnace slag, and converter slag. As in the case of rock, the main component of steel slag are CaO and $SiO_2$ ; further, steel slag is as alkaline as portland cement or concrete. Electric arc furnace oxidizing slag is possible to use as an aggregate for concrete ; however, it has been reclaimed because of it's expansibility caused by free CaO. Recently, a innovative rapid cooling method for melting steel slag has been developed in Korea, which reduces free lime content to minimum level and increases the stability of iron oxide. Therefore, this study describes the results of a series of research to utilize globular shape of electric arc furnace oxidizing slag fine aggregates made by rapidly cooled method for the construction industry by cooling rapidly melted slag from the steel industry. First of all, an experiment was carried out to investigate the quality characteristics of rapidly cooled electric arc furnace oxidizing slag fine aggregates in order to determine whether they can be applied to the construction industry. Then, by applying them to concrete of various particle sizes, we explored experimentally the desired condition to apply rapidly cooled electric arc furnace oxidizing slag fine aggregates to concrete.

  • PDF

Quick Judgments of Properties of Fine Aggregate to Use the Electric Arc Furnace Oxidizing Slag

  • Lee, Hyung-Min;Lee, Han-Seung;Choi, Jae-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.442-451
    • /
    • 2011
  • Blast furnace slag is recycled as a high value-added material, while steel slag is difficult to recycle or is recycled as a low-grade filler material due to its expansive characteristics. Its property is caused by the high content of free lime and instable steel oxides. Recently, an innovative and rapid cooling method for melting steel slag has been developed in Korea, which reduces free lime content to a minimum level and increases the stability of steel oxides. However, researches on the long-term stability are not sufficient so far. Therefore, this study, focusing on the electric arc furnace oxidizing slag in the steel slag, aims to investigate the properties of the steel slag aggregate, its long-term volume stability and the engineering strength of mortar, and using it as a fine aggregate. This study result indicated that it was possible for it to be used as concrete aggregate because the volume change of the steel slag appeared to be stable.

Physical and Chemical Properties of Atomizing EFOS as Fine Aggregate for Concrete (아토마이징 전기로 산화슬래그 잔골재의 물리·화학적 특성)

  • Beom-Soo Kim;Sun-Mi Choi;Sang-Chul Shin;Sun-Gyu Park;Jin-Man Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.70-78
    • /
    • 2023
  • Blast furnace slag, a by-product of the steel industry, is mostly recycled as concrete admixture, but electric arc furnace slag has not been recycled to date. In particular, since electric arc furnace slag partially contains free lime (free-CaO) in the discharge, it is necessary to review this in order to recycle f or construction materials. Recently an atomizing process which is a method of rapidly cooling electric arc furnace slag has been developed and applied. Therefore, in order to use the fine aggregate of oxidized slag from electric furnace restored by this method as an aggregate for concrete, physical damage and chemical reviewing are required. In this study, a physical and chemical review was conducted on the fine aggregate of Electric Arc Furnace Oxidizing Slag (EFOS) as a by-product of the steel manufacturing process with atomizing process. In this experimental study, EFOS was experimentally examined about whether it can be used as concrete fine aggregate. Also, we intend to provide basic data for the future use of the EFOS fine aggregate. As a result of the experimental study, it was found that the fine aggregate of the EFOS satisfied the quality standards of the fine aggregate for concrete in most items specified by Korean Standard.

A Performance Evaluation of Concrete for Low-carbon Eco-friendly PC Box for Near-surface Transit System (저심도 철도시스템 구축을 위한 저탄소 친환경 PC 박스용 콘크리트의 성능 평가)

  • Koh, Tae-Hoon;Ha, Min-Kook;Jung, Ho-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3587-3595
    • /
    • 2015
  • Low-carbon eco-friendly precast concrete (PC) box structure has been recently was developed as an low-cost infrastructure of near-surface transit system. The concrete of PC box was manufactured by industrial byproducts such as ground granulated blast furnace (GGBF) slag, flyash and rapid-cooling electric arc furnace (EAF) oxidizing slag, its mechanical property and durability were estimated in this study. Based on the mechanical and durability tests, it is found that low-carbon eco-friendly concrete shows high initial compressive strength, more than 90% of design strength (35MPa), and high resistance to salt-attack, chemical- attack and freeze-thaw. Therefore, low-carbon eco-friendly PC box concrete technology is expected to contribute to the railway with low environmental impact.