• 제목/요약/키워드: Rational fraction expansion

검색결과 3건 처리시간 0.018초

CERTAIN FORM OF HILBERT-TYPE INEQUALITY USING NON-HOMOGENEOUS KERNEL OF HYPERBOLIC FUNCTIONS

  • Santosh Kaushik;Satish Kumar
    • Korean Journal of Mathematics
    • /
    • 제31권2호
    • /
    • pp.189-201
    • /
    • 2023
  • In this article, we establish Hilbert-type integral inequalities with the help of a non-homogeneous kernel of hyperbolic function with best constant factor. We also study the obtained inequalities's equivalent form. Additionaly, several specific Hilbert's type inequalities with constant factors in the term of the rational fraction expansion of higher order derivatives of cotangent and cosine functions are presented.

Partial Fraction Expansions for Newton's and Halley's Iterations for Square Roots

  • Kouba, Omran
    • Kyungpook Mathematical Journal
    • /
    • 제52권3호
    • /
    • pp.347-357
    • /
    • 2012
  • When Newton's method, or Halley's method is used to approximate the pth root of 1-z, a sequence of rational functions is obtained. In this paper, a beautiful formula for these rational functions is proved in the square root case, using an interesting link to Chebyshev's polynomials. It allows the determination of the sign of the coefficients of the power series expansion of these rational functions. This answers positively the square root case of a proposed conjecture by Guo(2010).

RELATIONSHIPS BETWEEN CUSP POINTS IN THE EXTENDED MODULAR GROUP AND FIBONACCI NUMBERS

  • Koruoglu, Ozden;Sarica, Sule Kaymak;Demir, Bilal;Kaymak, A. Furkan
    • 호남수학학술지
    • /
    • 제41권3호
    • /
    • pp.569-579
    • /
    • 2019
  • Cusp (parabolic) points in the extended modular group ${\bar{\Gamma}}$ are basically the images of infinity under the group elements. This implies that the cusp points of ${\bar{\Gamma}}$ are just rational numbers and the set of cusp points is $Q_{\infty}=Q{\cup}\{{\infty}\}$.The Farey graph F is the graph whose set of vertices is $Q_{\infty}$ and whose edges join each pair of Farey neighbours. Each rational number x has an integer continued fraction expansion (ICF) $x=[b_1,{\cdots},b_n]$. We get a path from ${\infty}$ to x in F as $<{\infty},C_1,{\cdots},C_n>$ for each ICF. In this study, we investigate relationships between Fibonacci numbers, Farey graph, extended modular group and ICF. Also, we give a computer program that computes the geodesics, block forms and matrix represantations.