• Title/Summary/Keyword: Rats Tissue distribution

Search Result 92, Processing Time 0.026 seconds

Pharmacokinetics and Tissue Distribution of UTI in the Rat (랫드에서의 UTI의 약물동태학 및 조직 분포)

  • 정요찬;윤효인;조명행;박병권;발일현;김복환;송동호
    • Biomolecules & Therapeutics
    • /
    • v.4 no.3
    • /
    • pp.265-270
    • /
    • 1996
  • The purpose of this study was to determine pharmacokinetic parameters and tissue distribution patters of urinary trypsin inhibitor(UTI) in Sprague-Dawley rats. $Na^{125}$I was conjugated to UTI to make $^{125}I-UTI$ and the concentrations were determined by $\gamma$-counter. With the aid of nonlinear least-square regression analysis for i.v bolus injection of 1,000 unit UTI including $^{125}I-UTI$, the temporal concentration curves were best fitted by 2-compartment open model. The distribution phase half-life was 0.39$\pm$0.02 hours whereas the elimination half-life was 12.99$\pm$1.05 hours in male rats. The volume of distribution and total body clearance in male rats were 0.28$\pm$0.01 1/kg and 83.16$\pm$1.15 ml/kg/h, respectively. We could not find any difference of pharmacokinetic parameters of UTI between male and female rats. UTI were distributed widely in rat organs. In both male and female rats, the kidney was the highest distributed organ. Amount of UTI in 24 hour cumulative urine in male rats was 36.22$\pm$8.74% and that in 48 hours was 43.32$\pm$10.55%. Excretion via feces was very scanty, with the 24 hours cumulative amount being only 2.76$\pm$0.97%. This data suggest the main excretion route of UTI is urine.

  • PDF

Excretion, Tissue Distribution and Toxicities of Titanium Oxide Nanoparticles in Rats after Oral Administration over Five Consecutive Days (티타늄나노입자의 랫드 5일 반복 경구투여 후 배설, 조직분포 및 독성에 관한 평가연구)

  • Kim, Hyejin;Park, Kwangsik
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.4
    • /
    • pp.294-303
    • /
    • 2014
  • Objectives: Excretion and tissue distribution of titanium oxide nanoparticles were evaluated in rats after oral administration. The relation between toxicity and systemic concentration of nanoparaticles was investigated. Methods: Rats were orally treated with titanium oxide nanoparticles (10, 100 mg/kg) for five consecutive days. General toxicity, blood chemistry, and serum biochemical analysis were analyzed. Titanium concentration in liver, kidney, lung, urine and feces were measured and histopathology was performed in these organs. Results: Induction of toxicological parameters was not observed and titanium nanoparticles were excreted via feces. Conclusion: Absorption of titanium oxide nanoparticles via the gastrointestinal tract after oral administration was very poor and systemic concentration of titanium oxide nanoparticles was not elevated. Titanium oxide nanoparticles did not cause toxicities in rats after oral administration.

Acute Toxicity and Tissue Distribution of Cerium Oxide Nanoparticles by a Single Oral Administration in Rats

  • Park, Eun-Jung;Park, Young-Kwon;Park, Kwang-Sik
    • Toxicological Research
    • /
    • v.25 no.2
    • /
    • pp.79-84
    • /
    • 2009
  • Cerium oxide nanoparticles (size: 30 nm) were prepared by the supercritical synthesis method, Acute oral toxicity and tissue distribution of the nanoparticles were evaluated by a single administration in rats. Oral administration of the nanoparticles to the rats did not lead to death when the animals were treated by a dose of 5 g/kg (high dose) as well as 100 mg/kg (low dose). Abnormal clinical signs, changes in serum biochemistry and hematology were not observed in high-dose treated group compared to the vehicle control group. Lesions in liver, lung and kidney were not observed in high-dose treated group by histopathological examination. Tissue distribution analysis in liver, kidney, spleen, lung, testis and brain was performed on day 1, day 7 and day 14 after treatment. The average values of the accumulated cerium oxide nanoparticles were elevated in all tissues but statistical significance was only shown in lung. Low levels of tissue distributions after a single oral administration seem to be the low bioavailability of the nanoparticles.

Pharmacokinetics and Tissue distribution of DWP20373, a Novel Fluoroquinolone, in Rats and Beagle Dogs (신규 플르오로퀴놀롤계 항생물질인 DWP20373의 흰쥐 및 개에서의 체내동태와 조직분포)

  • 조재열;한승희;김병오;남권호;김지연;유영호;이재욱;박명환;김재환
    • Biomolecules & Therapeutics
    • /
    • v.5 no.2
    • /
    • pp.179-186
    • /
    • 1997
  • The pharmacokinetics and tissue distribution of DWP20373, a novel fluoroquinolone, were examined in rats and beagle dogs after a single intravenous and oral administration. Analysis of DWP20373 in plasma, tissue, and urine was performed by both HPLC and microbiological assay. The plasma drug concentration declined biexponentially both rats and beagle dogs. In the rats, the terminal drug elimination half-life (t$_{1}$2$\beta$/) was 64 min (IV) and 57 min (PO) by bioassay, and 76 min (IV) and 77 min (PO) by HPLC. Whereas in beagle dogs, t$_{1}$2$\beta$/ was 196 min (IV) and 350 min (PO). The volume of distribution at steady-state (Vd$_{ss}$ ) was 811 ml/kg (bioassay) and 2061 ml/kg (HPLC) in rats, and 2738 ml/kg (bioassay) in beagle dogs. The total body clearance (Cl$_{t}$) of DWP20373 was 10 ml/min/kg (bioassay) and 7 ml/min/kg (HPLC) in rats, and 11 m1/min/kg (bioassay) in beagle dogs. The extent of bioavailability after oral administration was 49% (bioassay) and 67% (HPLC) in rats, and 84% (bioassay) in beagle dogs. The 24-h urinary recovery, measured by bioassay, was 2.7% after oral dosing and 5.5% after intravenous dosing in rats. Serum protein binding ratio determined at 27g/ml was 78%. This drug was also distributed in tissues in the decreasing order of liver, kidney, spleen, lung, heart, and muscle determined at 30 min after oral administration.on.

  • PDF

Studies on Effects of Chloroform to the Tissue Lactic Dehydrogenase and Glutamic Dehydrogenase Activities of Rats (클로로포름이 백서장기(白鼠臟器)의 효소활성(酵素活性)에 관(關)한 연구(硏究))

  • Chun, Byung-Sam;Haw, Kum
    • Journal of Nutrition and Health
    • /
    • v.4 no.1
    • /
    • pp.21-28
    • /
    • 1971
  • 1. The effects of chloroform to the tissue lactic dehydrogenase (LDH) activities and its isozymes and to the tissue glutamic dehydrogenase (GDH) activities and its isoaymes are studied using the experimental albino male adult rats in this paper. The tissues studies are liver, kidney, heart, and brain. Besides the control group, two experimental groups are studied providing succeedingly 4 days interpariental administrations of chloroform, 0.0025ml and 0.025ml per day respectively. The changes of body weights, weights of organs, activities of GDH and LDH and their isozymes of each tissues, are analysed. 2. The body weights of rats are decreased due to the chloroform administration. 3. There are no significant differences of weights of organs due to the chloroform administration. 4. The significant decreases of tissue GDH activities and the significant changes in percent distribution of the GDH isozymes are found due to the chloroform administration. This weight be interpretated that chloroform effects to the protein and amino acid metabolism of rats. 5. Due to the chloroform administration, the significant changes in tissue LDH activities and in percent distribution of tissue LDH isozymes indicating the decreases of $LDH_1$ which is the aerobic heart type and the increase of $LDH_5$ which is the anaerobic muscle type, are observed. This could be estimated that chloroform effects to the carbohydrate metabolism, particularly to the anaerobic glycolysis of rats.

  • PDF

Tissue distribution, excretion and effects on genotoxicity of tritium following oral administration to rats

  • Lee, Jei Ha;Kim, Cha Soon;Choi, Soo Im;Kim, Rae-Kwon;Kim, Ji Young;Nam, Seon Young;Jin, Young Woo;Kim, In Gyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.303-309
    • /
    • 2019
  • Tritium is an important nuclide that must be monitored for radiation safety management. In this study, HTO was orally administered to rats at the level of 37 kBq ($1{\mu}Ci$) or 370 kBq ($10{\mu}Ci$) to examine tissue distribution and excretion levels. After sacrifice, wet and dry tissue samples were weighed and analyzed for tissue free-water tritium (TFWT) and organically bound tritium (OBT). The mean tissue concentrations of TFWT (OBT) were 30.9 (17.8) and 4.4 (8.1) Bq/g on days 7 and 13 at the 37 kBq level and 30.8 (64.6) Bq/g on day 17 at the 370 kBq level. To assess the cytogenetic damage due to tritium exposure, a cytokinesis-blocked micronucleus (MN) assay was performed in blood samples from rats exposed to HTO for 14 and 21 days after oral administration. There was no significant difference in the MN frequencies between the control and exposed rats.

Tissue Distribution of Divalent Metal Transporter 1 and Regulation by Dietary Iron in Rats (흰쥐에서 Divalent Metal Transporter 1의 조직내 분포와 Iron에 의한 조절)

  • Choi Jae-Hyuck;Park Jung-Duck
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.4
    • /
    • pp.359-366
    • /
    • 2004
  • Iron (Fe) is an essential metal in biological processes, which maintains a homeostasis in the human body. Divalent metal transporter 1 (DMT1) has been known as an iron transporting membrane protein, which is involved in the uptake Fe at the apical portion of intestinal epithelium, and may transport Fe across the membrane of acidified endosome in peripheral tissues. In this study, we studied the tissue distribution of DMT1 in the Fe supplemented (FeS) diet fed rats, and the regulation of DMT1 expression by depleting body Fe. Sprague-Dawley rats were divided into two groups, and fed FeS (120 mg Fe/kg) diet or Fe deficient (FeD, 2∼6 mg Fe/kg) diet for 4 weeks. The evaluation of body Fe status was monitored by measuring sFe, UIBC and tissue Fe concentration. Additionally, DMT1 mRNA levels were analyzed in the peripheral tissues by using the quantitative real time RT-PCR method. In the FeS diet fed rats, the tissue Fe was maintained at a relatively high level, and DMT1 was eventually expressed in all tissues studied. DMT1 was highly expressed in the testis, kidney and spleen, while a moderate levels of DMT1 expression was detected in the brain, liver and heart. In the digestive system, the highest level of DMT1 was found in the duodenum. Feeding the FeD diet caused a reduced body weight gain and depletion of body Fe with finding of decreased sFe, increased UIBC and decreased tissue Fe concentration. The depletion of body Fe upregulated DMT1 expression in the peripheral tissue. The expression of DMT1 was very sensitive to the body Fe depletion in the small intestine, especially in the duodenum, showing dramatically higher levels in the FeD rats than those of the FeS group. In the FeD diet fed animals, the expression of DMT1 was low significantly in other tissues compared with the duodenum. The expression of DMT1, however, was 60∼120% higher in the testis, kidney and spleen, and 30∼50% higher in the lung, liver and heart, compared to the FeS diet fed rats. In summary, DMT1 expression was ubiquitous in mammalian tissue, and the level of expression was the organ-dependent. The expression of DMT1 in peripheral tissues was upregulated by depletion of body Fe. Duodenum was the most sensitive tissue among organs studied during Fe depletion, and expressed the greatest level of DMT1, while other tissues were less higher than in duodenum. This study supports that DMT1 plays a role in maintaining the body Fe level through intestinal uptake as well as homeostasis of Fe in the peripheral tissue.

Pharmacokinetic Behavior and Tissue Distribution of Verapamil and Its Enantiomers in Rats by HPLC

  • He, Langchong;Wang, Sicen
    • Archives of Pharmacal Research
    • /
    • v.26 no.9
    • /
    • pp.763-767
    • /
    • 2003
  • The differences in pharmacokinetic behavior and tissue distribution of verapamil and its enantiomers were investigated in rats. In high-performance liquid chromatographic method, an achiral ODS column (150 mm $\times$ 4.6 mm i.d.) with the mobile phase consisting of methanol-water (73:30, v/v) was used for the determination of the concentration for racemic verapamil, and a Chiralcel OJ column (250 mm$\times$4.6 mm i.d.) with the mixture of n-haxane-ethanol-triethylamine (85:15:0.2, v/v/v) as mobile phase was used to determine the concentrations of verapamil enantiomers. A fluorescence detector in the analytical system was set at excitation and emission wavelengths of 275 nm and 315 nm. The differences between enantiomers were apparent in the pharmacokinetics in rats. The area under the concentration-time curve (AUC) of S-(-) verapamil was higher than that of R-(+) verapamil. The half-distribution time ($T_{1/2(\alpha)}$) of S-(-) verapamil which distributing to tissue from blood was shorter than that of R-(+) verapamil, but the elimination half-time ($T_{1/2(\beta)}$) was longer in rat following oral administration of racemic verapamil. At 1.3 h after oral administration of racemic verapamil, however, there were no significant differences between enantiomers for the distributions in major tissues such as heart, cerebrum, cerebellum, liver, spleen and kidney.

Pharmacokinetics and Tissue Distribution of DWP20367, a Novel Fluoroquinoloce, in Rats and Beagle Dogs (신규 플루오로퀴놀론계 DWP20367의 흰쥐 및 개에서의 체내동태와 조직분포)

  • 조재열;한승희;김병오;남권호;손호정;유영효;정대영
    • Biomolecules & Therapeutics
    • /
    • v.5 no.3
    • /
    • pp.284-291
    • /
    • 1997
  • The pharmacokinetics and tissue distribution of DWP20367 (1-cyclopropyl-6-fluoro-8-chloro-7-(2, 7-diazabicyclo[3,3,0]tract-4-ene-7-yl)-1,4-dihydro-4-oxoquinoline-3-carboxylic acid), a novel fluoroquinolone, were examined in rats and beagle dogs after a single intravenous and oral administration. Analysis of DWP20367 in plasma, tissue, and urine was determined by both HPLC and microbiological assay (bioassay). The plasma concentration-time curves of the drug in rats and beagle dogs were biexponentially declined. The terminal half-life (t$_{1}$2$\beta$/) of the drug in rats was about 60.1 $\pm$7.3 min (i.v.) and 61.3 $\pm$ 12.4 min (p.o.) in bioassay, and 86.3 $\pm$19.8 min (i.v.) and 50.9$\pm$ 14.9 min (p.o.) in HPLC. In beagle dogs, half-life of the drug determined by bioassay was about 121.8$\pm$6.2 min (i.v.) and 111.0$\pm$7.6 min (p.o.). The volume of distribution at steady-state (Vd$_{ss}$ ) was 243.8$\pm$74.1 ml/kg (bioassay) and 339.2$\pm$84.3 ml/kg (HPLC) in rats, and 1587.5 $\pm$536.9 ml/kg (bioassay) in beagle dogs. The total body clearance (Cl$_{t}$) of DWP20367 was 3.4 $\pm$ 0.4 ml/min/kg (bioassay) and 2.4$\pm$0.4 ml/min/kg (HPLC) in rats, and 12.3$\pm$ 1.0 ml/min/kg (bioassay) in beagle dogs, respectively. The extent of bioavailability after oral administration was 89.1%(bioassay) and 79.9% (HPLC) in rats, and 78.7% (bioassay) in beagle dogs. Urinary recovery (24-h) assayed by bioassay was 0.7% (p.o.) and 1.2% (i.v.) in rats, and 0.8% (p.o.) and 1.0% (i.v.) in beagle dogs. In rats, 24-h fecal recovery determined by bioassay was 11.2% (p.o.) and 0.1% (i.v.). Rat and human serum protein binding ratios at 2$\mu$g/ml were about 90~91%. This drug determined by bioassay was also distributed by the order of liver, kidney, lung, heart, spleen and muscle 30 min after oral administration.on.

  • PDF

Tissue Distribution of Tropane Alkaloids in Rats and its Determination by GC/MS After the Oral Administration of Scopolia Rhizome (GC/MS에 의한 tropane alkaloids의 분석 및 흰쥐의 생체내 분포)

  • 임미애;백승경;이주선;박세연
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.729-735
    • /
    • 1999
  • Scopolia rhizome is mistaken as an atractylodes rhizome because of their similarities in shape. That is why atractylodes rhizome imported from China sometimes contain scopolia rhizome, which is very toxic. 8 persons were intoxicated atractylodes after taking imported atractylodes rhizome which is tainted. In kampo medicine prepared with such imported atractylodes rhizome, the level of tropane alkaloids ranged from 1.12∼4.34 mg/dose. In this study, we tried to investigate the tissue distribution of scopolia rhizome in rats. The extracts of scopolia was administered orally to rats (a single dose of 10mg/kg, 20mg/kg and 7 days repeated dose of 10mg/kg). Their blood was collected at 0.5, 1, 2, 4, 6 hrs, and liver, kidney, lung and spleen were collected after 6 hrs. The tissue homogenate was applied to solid phase extraction column for the determination of tropane alkaloids. After the oral administration of 20mg/kg scopolia extracts, l-hyoscyamine was detected in rat blood to 2 hrs after dosing. The concentration of tropane alkaloids was the highest in liver followed by lung, kidney and spleen. However, lung, kidney and spleen were similar in amount.

  • PDF