• Title/Summary/Keyword: Re-transmission

Search Result 349, Processing Time 0.036 seconds

A Secure 6LoWPAN Re-transmission Mechanism for Packet Fragmentation against Replay Attacks (안전한 6LoWPAN 단편화 패킷 재전송 기법에 관한 연구)

  • Kim, Hyun-Gon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.101-110
    • /
    • 2009
  • The 6LoWPAN(IPv6 Low-power Wireless Personal Area Network) performs IPv6 header compression, TCP/UDP/IGMP header compression, packet fragmentation and re-assemble to transmit IPv6 packet over IEEE 802,15.4 MAC/PHY. However, from the point of view of security. It has the existing security threats issued by IP packet fragmenting and reassembling, and new security threats issued by 6LoWPAN packet fragmenting and reassembling would be introduced additionally. If fragmented packets are retransmitted by replay attacks frequently, sensor nodes will be confronted with the communication disruption. This paper analysis security threats introduced by 6LoWPAN fragmenting and reassembling, and proposes a re-transmission mechanism that could minimize re-transmission to be issued by replay attacks. Re-transmission procedure and fragmented packet structure based on the 6LoWPAN standard(RFC4944) are designed. We estimate also re-transmission delay of the proposed mechanism. The mechanism utilizes timestamp, nonce, and checksum to protect replay attacks. It could minimize reassemble buffer overflow, waste of computing resource, node rebooting etc., by removing packet fragmentation and reassemble unnecessary.

Performance Evaluation of Cryptographic Algorithms for the 6LoWPAN with Packet Fragmentations (6LoWPAN 단편화 패킷 재전송에 따른 암호화 알고리즘 성능 분석)

  • Kim, Hyun-Gon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.77-84
    • /
    • 2011
  • In this paper we implement a 6LoWPAN protocol on the MICAz sensor platform, which could minimize packet re-transmission, and support security primitives for packet integrity and confidentiality. And we also present a performance evaluation of the implemented protocol calculated according to the cryptographic algorithms. In the re-transmission method, time stamp, nonce, and checksum are considered to protect replay attacks. As cryptographic algorithms, AES, 3DES, SHA2, and SHA1 are implemented. If transmission errors (thus, packet losses) and the number of hops are increase then, packet re-transmissions are increase exponentially from the experimental results. Also, the result shows that cryptographic operations take more time than packet re-transmission time.

Study of the Transmission Error Prediction of a Five-speed Manual Transmission System (5속 수동 트랜스미션의 전달오차 예측에 관한 연구)

  • Cho, Sang-Pil;Lee, Dong-Gyu;Kim, Lae-Sung;Xu, Zhe-zhu;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.66-71
    • /
    • 2016
  • For the manual transmission gearbox used in the automotive industry, gear meshing transmission error is the main source of noise known as gear whine, and radiated gear whine noise plays an important role in the whole gearbox. Therefore, in order to keep competitive in the automotive market, the NVH performance of transmission gearboxes is increasingly important for automotive manufacturers when a new product is developed. In this paper, in order to achieve an optimized tooth contact pattern, gear tooth modification is applied to make up for the deformation of the teeth owing to load. A five-speed MT gearbox is firstly modeled in RomaxDesign software and the prediction of transmission error under the loaded torques is studied and compared. From the simulation, the transmission error and maximum contact stress are also simulated and compared after tooth modification of the loaded torques. Finally, the simulation results are used to optimize the whole gearbox design and the final gearbox prototype is testified to obtain NVH performance in a semi-anechoic room.

Reliable Transmission Using Intermediate Relay Node-based Transmission for Reliability in Sensor Network (센서 네트워크의 고 신뢰성을 위한 중계 노드 기반 전송)

  • Lee Bo-Hyung;Yoon Hyung-Wook;Park Jongho;Chung Min Young;Lee Tea-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.850-857
    • /
    • 2005
  • Sensor networks consist of sensor nodes with small size, low cost, lowpower consumption, and multi-functions to sense, to process and to communicate. The main issue in sensor networks has been focused on minimizing power consumption of sensors to maximize network life time. In some critical applications, however, the most important issue is to transmitsensing information to the end user (the sink node) with reliability. Reliable information forwarding using multiple paths in sensor networks (ReinForM) has been proposed to achieve desired reliability in the error-prone channel, but it needs increasing transmission riverhead as the channel error rate becomes high and the number of hops between the source node and the sink node increases. In this paper, we propose a reliable transmission rnechanissmusing intermediate source nodes in sensor networks (ReTrust) to reduce packet overhead while keeping the desired reliability. ReTrust has beenshown to provide desired reliability and reduced overhead via simulationsand analysis.

A Loss-Minimized Power Flow Algorithm Considering Transmission Losses Re-distribution (송전 손실 재분배를 고려한 최소 손실 조류 계산 알고리즘)

  • Chae, Myung-Suk;Lee, Myung-Hwan;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.223-225
    • /
    • 1998
  • This paper presents a new approach for power flow calculation, which minimizes the transmission losses in power systems with the control of voltage magnitudes on P-V nodes. In this approach, the transmission losses are re-distributed to each P-V node, at each iteration, to reduce the effect of slack. The steepest descent method is adopted, in this study, to minimize the transmission losses augmented with penalty functions to account for voltage constraints. IEEE 14 and 30 buses test systems were used for the performance demonstration of the proposed method in this paper. The simulation results showed that the proposed method can reduce transmission losses and improve voltage profiles of power systems.

  • PDF

Efficient Energy management through Relay-Transsmission and Cluster Division in Wireless Sensor Network (무선 센서네트워크에서 중계전송과 클러스터 분할법을 사용한 효율적인 에너지 관리)

  • Kim, Jae-Sueng;Kim, Dong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.401-405
    • /
    • 2007
  • In sensor network, cluster based routing protocol about efficient energy usage method has researched variously. But existing cluster based routing protocol have problems. one of the problem is sensor nodes's imbalance energy consumption problem at cluster reconstruction. anther is non- connection problem between header node and spc node when they are far from each other, not properly connected. We propose cluster re-division and header node of multihop transmission method in this paper. The cluster re-division method is the method that re-divides existing routing protocol with the small-scale cluster and multihop transmission method is the method regarding the relay transmission between the header nodes. Through the simulation, the proposed routing mechanism shows more excellent than exiting routing protocol in balance energy consumption and energy efficiency.

  • PDF

Study on the Transmission Error Prediction for a Spur Gear Pair (스퍼기어의 전달오차에 관한 연구)

  • Zhang, Qi;Zhang, Jing;Zhu, Zhong Gang;Wang, Zhen Rong;Xu, Zhe-zhu;Lyu, Sung Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.109-114
    • /
    • 2016
  • Nowadays, lower gear vibration and noise are necessary for drivers in automotive gearbox, which means that transmission gearbox should be optimized to avoid noise annoyance and fatigue before quantity production. Transmission error (T.E.) is the excitation factor that affects the noise level known as gear whine, and is also the dominant source of noise in the gear transmission system. In this paper, the research background, the definition of T.E. and gear micro-modification were firstly presented, and then different transmission errors of loaded torques for the spur gear pair were studied and compared by a commercial software. It was determined that the optimum gear micro-modification could be applied to optimize the transmission error of the loaded gear pair. In the future, a transmission test rig which is introduced in this paper is about to be used to study the T.E. after gear micro-geometry modification. And finally, the optimized modification can be verified by B&K testing equipment in the semi-anechoic room later.

Study on Optimal Design and Analysis of Worm Gear Reducer for High Place Operation Car (고소작업차용 웜기어 감속기의 최적설계 및 해석에 관한 연구)

  • Kim, Tae Hyun;Jang, Jeong Hwan;Lee, Dong Gyu;Kim, Lae Sung;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.98-103
    • /
    • 2015
  • Swing reducers are widely used in special vehicles that have swing motions. Generally, compact swing reducers were constituted by a worm gear pair. Worm gears are one of the most important technical devices for transmitting torque between spatially crossed axes. Due to their high transmission ratio and compact structure, they are widely used in power transmission applications where high reduction is required. This paper presented approaches to improve the transmission efficiency and assembling performance of 3.5 ton class worm gear swing reducers. Worm wheel and the case of swing reducers were optimized and certified by a finite element method. Finally, an actual swing reducer was processed and assembled to test the performance.

A Study on the Design of a Gear Transmission Error Test Rig (기어 전달오차 측정 장비의 설계에 관한 연구)

  • Zhang, Qi;Zhang, Jing;Yan, Hou-Ling;Zhu, Qing-Wang;Xu, Zhe-zhu;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.14-19
    • /
    • 2016
  • Transmission error (TE) is the most important cause of gear noise and vibration because TEs affect the changes of the force and the speed of gears. TE is usually expressed as an angular deviation, or a linear deviation measured at the pitch point and calculated at successive positions of the pinion as it goes through the meshing cycle. Accurate measurement of TE for gear transmission will provide a reasonable basis for gear design, manufacturing processes and quality control. Therefore, in order to study the accuracy of the gear transmission, stability, TE, vibration and noise after gear micro-geometry modification, a gear transmission test rig is proposed in this paper, which is based on the existing technical conditions, by using reasonable testing methods, hardware and a signal processing method. All of the details and the experience can be taken into consideration in the next upgraded test rig.

An Energy Efficient Topology Control Algorithm using Additional Transmission Range Considering the Node Status in a Mobile Wireless Sensor Network (이동성 있는 무선 센서 네트워크에서 노드의 상태를 고려한 에너지 효율적인 토폴로지 제어 방법)

  • Youn, Myungjune;Jeon, Hahn Earl;Kim, Seog-Gyu;Lee, Jaiyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.9
    • /
    • pp.767-777
    • /
    • 2012
  • Topology control increases channel efficiency by controlling transmission power of a node, and as a result, network lifetime and throughput are increased. However, reducing transmission range causes a network connectivity problem, especially in mobile networks. When a network loses connectivity, the network topology should be re-configured. However, topology re-configuration consumes lots of energy because every node need to collect neighbor information. As a result, network lifetime may decrease, even though topology control is being used to prolong the network lifetime. Therefore, network connectivity time needs to be increased to expend network lifetime in mobile networks. In this paper, we propose an Adaptive-Redundant Transmission Range (A-RTR) algorithm to address this need. A-RTR uses a redundant transmission range considering a node status and flexibly changes a node's transmission range after a topology control is performed.