• Title/Summary/Keyword: Reaction sintering

Search Result 552, Processing Time 0.031 seconds

Attrition Milling and Reaction-sintering of the Oxide-Metal Mixed Powders: II. Reaction-sintering Behavior as the Milling Characteristics of Powders (산화물과 금속 복합 분말의 Attrition Milling 및 반응소결: II. 분말의 분쇄특성에 따른 반응소결 거동)

  • 황규홍;김의훈
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.448-456
    • /
    • 1994
  • The reaction-sintered alumina and zirconia-alumina ceramics were fabricated from the Al/Al2O3 or Zl/ZrO2(Ca-PSZ) powder mixtures via the attrition milling. And the effects of the milling characteristics of used raw powders on reaction sintering were investigated. After attrition milling and isopressing at 400 MPa the Al/Al2O3 specimen was oxidated at 1200℃ for 8 hours followed by sintering at 1550℃ for 3 hours. Because mixed powders of flake-type Al with coarse alumina was much more effectively comminuted than the globular-type Al with coarse alumina powders, it's sintered body of more than 97% theoretical density was achived, but low contents of Al leads to relatively higher shrinkage of about 8%. And because coarse alumina particles was much more beneficial in cutting and reducing the ductile Al particles, using the coarse alumina powder was much more effective in reaction sintering. Fused Ca-PSZ powder was reaction sintered with Al at 1550℃ for 3 hours and low shrinkage ZrO2-Al2O3 composites were fabricated. But because Al/Ca-PSZ powder mixtures were not effectively milled the reaction sintering and densification was difficult. And the Ca ion in Ca-PSZ grains diffused into alumina grains during sintering so that the unstabilization of Ca-PSZ body was occured which gave the microcracks in the specimens.

  • PDF

The Fabrication and Their Properties of Zirconia-spinel COmposites by Reaction Sintering (반응소결에 의한 지르코니아-스피넬 복합체의 제조 및 성질)

  • 황규홍;김상모
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.779-784
    • /
    • 1996
  • The spinel/cubic stabilized zirconia composites were fabricated via, The reaction sintering of monoclinic zirco-nia(baddeleyite) added with MgAl powder. During heating Mg and Al were oxidizedfirst and subsequently the oxides formed spinel (MgAl2O4) and finally remained MgO stabilized the zirconia, Because the oxides formed during the oxidation process would have very fine grain size (order of submicron) mainly due to the effects of attrition milling the reaction sintering was more effective in densification and improvement of strength and fracture toughness than conventional sintering with direct addition of MgO. The sintering behavior phase transformation during firing and mechanical properties of sintered body were investigated with emphasis on the relations between spinel formation due to MgAl addition and sintering and mechanical properties.

  • PDF

$\beta$-SiC Formation Mechanisms in Si Melt-C-SiC System (용융 Si-C-SiC계에서 $\beta$-SiC 생성기구)

  • 서기식;박상환;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.655-661
    • /
    • 1999
  • ${\beta}$-SiC formation mechanism in Si melt-C-SiC system with varying in size of carbon source was investigated. A continuous reaction sintering process using Si melt infiltration method was adopted to control the reaction sintering time effectively. It was found that ${\beta}$-SiC formation mechanism in Si melt-C-SiC system was directly affected by the size of carbon source. In the Si melt-C-SiC system with large carbon source ${\beta}$-SiC formation mechanism could be divided into two stages depending on the reaction sintering time: in early stage of reaction sintering carbon dissolution in Si melt and precipitation of ${\beta}$-SiC was occurred preferentially and then SIC nucleation and growth was controlled by diffusion of carbon throughy the ${\beta}$-SiC layer formed on graphite particle. Furthmore a dissolution rate of graphite particles in Si melt could be accelerated by the infiltration of Si melt through basal plane of graphite crystalline.

  • PDF

Sintering Behavior of Ultra-fine Hydroxyapatite Powders Synthesized by Hydrothermal Reaction (수열반응으로 합성한 Hydroxyapatite 초미분말의 소결특성)

  • 최재웅;조성원;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.11
    • /
    • pp.1265-1270
    • /
    • 1994
  • Ultra-fine hydroxyapatite powder were synthesized by the hydrothermal reaction at 10 atm, 3 hrs of Ca(OH)2 suspension with (NH4)2HPO4 solution, and were characterized sintering behavior. Sintered bodies of hydroxyapatite powders which synthesized by hydrothermal reaction method has less weight loss, less sintering shrinkage and superior mechanical property, and was more dense than sintered bodies of hydroxyapatite powder which synthesized by wet method. Sintered bodies were hydroxyapatite single phase. When soack in Ringer's solution for 2 weeks, hydroxyapatite powders preserved hydroxyapatite and sintered body absorbed trace of Ca2+ ion with soaked time.

  • PDF

Fabrication of SiC/SiC Composites by Reaction Sintering Process (반응소결법에 의한 SiC/SiC 복합재료의 제조)

  • Lee, S.P.;Yoon, H.K.;Kohyama, A.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.27-31
    • /
    • 2001
  • Hi-Nicalon SiC fiber reinforced SiC composites (SiC/SiC) have been fabricated by the reaction sintering process. Braided Hi-Nicalon SiC fiber with double interphases of BN and SiC was used in this composite system. The microstructures and the mechanical properties of reaction sintered SiC/SiC composites were investigated through means of electron microscopies (SEM, TEM, EDS) and bending tests. The matrix morphology of reaction sintered SiC/SiC composites was composed of the SiC phases that the composition of the silicon and the carbon is different. The TEM analysis showed that the residual silicon and the unreacted carbon were finely distributed in the matrix region of reaction sintered SiC/SiC composites. Reaction sintered SiC/SiC composites also represented proper flexural strength and fracture energy, accompanying the noncatastrophic failure behavior.

  • PDF

Non-sintering Preparation of Copper (II) Oxide Powder for Electroplating via 2-step Chemical Reaction

  • Lee, Seung Bum;Jung, Rae Yoon;Kim, Sunhoe
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.146-154
    • /
    • 2017
  • In this study, copper (II) oxide was prepared for use in a copper electroplating solution. Copper chloride powder and copper (II) oxide are widely used as raw materials for electroplating. Copper (II) oxide was synthesized in this study using a two-step chemical reaction. Herein, we developed a method for the preparation of copper (II) oxide without the use of sintering. In the first step, copper carbonate was prepared without sintering, and then copper (II) oxide was synthesized without sintering using sodium hydroxide. The optimum amount of sodium hydroxide used for this process was 120 g and the optimum reaction temperature was $120^{\circ}C$ regardless of the starting material.

Fabrication of Silicon Nitride Ceramics by Gel-Casting and Microwave Gas Phase Reaction Sintering(II) : Microwave Nitridation of Silicon and Microwave Sintering of Silicon Nitride (Gel-Casting 및 마이크로파 기상반응소결에 의한 질화규소 세라믹 제조에 대한 연구(II) : 마이크로파에 의한 실리콘의 질화반응 및 질화규소의 소결)

  • Bai, Kang;Woo, Sang-Kuk;Han, In-Sub;Seo, Doo-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.354-359
    • /
    • 2011
  • Silicon nitride ceramics were prepared by microwave gas phase reaction sintering. By this method higher density specimens were obtained for short time and at low temperature, compared than ones by conventional pressureless sintering, even though sintering behaviors showed same trend, the relative density of sintered body inverse-exponentially increases with sintering temperature and/or holding time. And grain size of ${\beta}$-phase of the microwave sintered body is bigger than one of the conventional pressureless sintered one. Also they showed good bending strengths and thermal shock resistances.

Effect of pH and Reaction Temperature on Mechanical Properties of Hydroxyapatite for Dental prosthesis (치관보철용 Hydroxyapatite의 기계적 물성에 미치는 pH 및 반응온도의 영향)

  • Chung, In-Sung;Her, Ho-Young
    • Journal of Technologic Dentistry
    • /
    • v.26 no.1
    • /
    • pp.89-96
    • /
    • 2004
  • Hydroxyapatite powder were synthesized by precipitation method, varying pH, and reaction temperature. The powders were heated at 1,200$^{\circ}{\cdots}$ and 1,300$^{\circ}{\cdots}$ for fabrication of dental prosthesis. The results are as follows: Synthesized powder showed the smallest particle in size, under the conditions of pH 11 and reaction temperature 37$^{\circ}{\cdots}$. The hydroxyapatite was partially converted to $\alpha,\;\beta$-TCP at 1,200$^{\circ}{\cdots}$ and 1,300$^{\circ}{\cdots}$. Mechanical strength of sample was affected by such powder preparation conditions as pH and reaction temperature and sintering temperature. The mechanical strength of sample prepared under the same conditions was increased with increasing pH, reaction temperature and sintering temperature.

  • PDF

Tribological Properties of Clay Bonded SiC (점토 결합 SiC 소결체의 마찰 마모 특성)

  • 한상준;이경희;이재한;김홍기
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.1027-1032
    • /
    • 1995
  • SiC had been widely applied for mechanical sealing as a sealing material. SiC sintering is commonly made of reaction sintering, presureless sintering, and hot isostatic pressing (HIP) sintering. In this investigation, however, clay bonded sintering was used to avoide any complications of the special sintering methods as mentioned above. In order to prevent harmful SiC oxidation in the clay bonded sintering, clay and frit were used to form the SiC oxidation protecting layer and graphite was added to provide high solid lubricity. As a result, the material with 6% clay (clay 5.4% and frit 0.6%) and 2~4% graphite (45 mesh) sintered at 140$0^{\circ}C$ for 3 hours, showed the following physical properties; porosity 6%, static friction coefficient 0.15, kinematic coefficient 0.1,. and specific wear rate 4.8$\times$10-8 $\textrm{mm}^2$kgf-1. On the other hand, the flexural strength was 900kgf/$\textrm{cm}^2$. This tribological characteristic properties were similar to those of the reaction sintered SiC except the flexural strength.

  • PDF

Fabrication of β-SiAlONs by a Reaction-Bonding Process Followed by Post-Sintering

  • Park, Young-Jo;Noh, Eun-Ah;Ko, Jae-Woong;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.452-455
    • /
    • 2009
  • A cost-effective route to synthesize $\beta$-SiAlONs from Si mixtures by reaction bonding followed by post-sintering was investigated. Three different z values, 0.45, 0.92 and 1.87, in $Si_{6-z}Al_zO_zN_{8-z}$ without excess liquid phase were selected to elucidate the mechanism of SiAlON formation and densification. For RBSN (reaction-bonded silicon nitride) specimens prior to post-sintering, nitridation rates of more than 90% were achieved by multistep heating to $1400^{\circ}C$ in flowing 5%$H_2$/95%$N_2$; residual Si was not detected by XRD analysis. An increase in density was acquired with increasing z values in post-sintered specimens, and this tendency was explained by the presence of higher amounts of transient liquid phase at larger z values. Measured z values from the synthesized $\beta$-SiAlONs were similar to the values calculated for the starting compositions. Slight deviations in z values between measurements and calculations were rationalized by a reasonable application of the characteristics of the nitriding and post-sintering processes.