• Title/Summary/Keyword: Reactive oxygen

Search Result 3,102, Processing Time 0.038 seconds

Review of Reactive Oxygen (활성산소에 대한 고찰)

  • Hyong, In-Hyouk;Moon, Sang-Eun;Bae, Sung-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.1 no.1
    • /
    • pp.139-146
    • /
    • 2006
  • Purpose : This study is to understand the reactive oxygen which is expected to be a causative factor of aging condition including dementia, atherosclerosis, even cancer. Methods : The reactive oxygen is generated usually when people do very hard exercise or is under severe stressful situation or in unhealthy environment and as a protective reaction to reactive oxygen, human body releases antioxidant enzyme systems like superoxide dismutase (SOD), catalase, glutathione peroxidase (GPX), glutathion-S-transferase (GST) and non-enzymetic antioxidant systems like glutathione, ascorbate, $\beta$-carotene, vitimin E. Results : Nowadays, we are getting more interested in the generation of reactive oxygen especially in the area of physical education, food and nutrition, alternative medicine etc. Conclusion : The study of reactive oxygen in patients with musculoskeletal disease is also required and among various physical therapeutic approaches, the method of general coordinative manipulation is considered more necessary.

  • PDF

Formation of Reactive Oxygen Species and Cr(V) Entities in Chromium(VI) Exposed A549 Cells (크롬 6가 투여 후 A549 세포에서의 Reactive Oxygen Species와 크롬 5가의 발생)

  • 박형숙
    • Environmental Analysis Health and Toxicology
    • /
    • v.11 no.1_2
    • /
    • pp.49-57
    • /
    • 1996
  • The production of reactive oxygen species on addition of hexavalent chromium (potassium dichromate, $K_2Cr_2O_7$ ) to lung cells in culture was studied using flow cytometer analysis. A Coulter Epics Profile flow cytometer was used to detect the formation of reactive oxygen species after $K_2Cr_2O_7$ was added to A549 cells grown to confluence. The cells were loaded with the dye, 2',7'-dichlorofluorescein diacetate, after which cellular esterases removed the acetate groups and the dye was trapped intracellularly. Reactive oxygen species oxidized the dye, with resultant fluorescence. Increased doses of Cr(VI) caused increasing fluorescence (10-fold higher than background at 200 gM). Addition of Cr(III) compounds, as the picolinate or chloride, caused no increased fluorescence. Electron paramagnetic resonance (EPR) spectroscopic studies indicated that three (as yet unidentified) spectral "signals" of the free radical type were formed on addition of 20, 50, 100 and 200 gM Cr(VI) to the A549 cells in suspension. Two other EPR 'signals" with the characteristics of Cr(V) entities were seen at field values lower than the standard free radical value. radical value.

  • PDF

Astaxanthin Biosynthesis Enhanced by Reactive Oxygen Species in the Green Alga Haematococcus pluvialis

  • Kobayashi, Makio
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.6
    • /
    • pp.322-330
    • /
    • 2003
  • The unicellular green alga Haematococcus pluvialis has recently attracted great inter-est due to its large amounts of ketocarotenoid astaxanthin, 3,3'-dihydroxy-${\beta}$,${\beta}$-carotene-4,4'-dione, widely used commercially as a source of pigment for aquaculture. In the life cycle of H. pluvialis, astaxanthin biosynthesis is associated with a remarkable morphological change from green motile vegetative cells into red immotile cyst cells as the resting stage. In recent years we have studied this morphological process from two aspects: defining conditions governing astaxanthin biosynthesis and questioning the possible function of astaxanthin in protecting algal cells against environmental stress. Astaxanthin accumulation in cysts was induced by a variety of environmental conditions of oxidative stress caused by reactive oxygen species, intense light, drought, high salinity, and high temperature. In the adaptation to stress, abscisic acid induced by reactive oxygen species, would function as a hormone in algal morphogenesis from veget ative to cyst cells. Furthermore, measurements of both in vitro and in vivo antioxidative activities of astaxanthin clearly demonstrated that tolerance to excessive reactive oxygen species is greater in astaxanthin-rich cysts than in astaxanthin-poor cysts or astaxanthin-less vegetative cells. Therefore, reactive oxygen species are involved in the regulation of both algal morph O-genesis and carotenogenesis, and the accumulated astaxanthin in cysts can function as a protective agent against oxidative stress damage. In this study, the physiological roles of astaxanthin in stress response and cell protection are reviewed.

Modulation of Reactive Oxygen Species to Overcome 5-Fluorouracil Resistance

  • Chun, Kyung-Soo;Joo, Sang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.479-489
    • /
    • 2022
  • 5-Fluorouracil (5-FU) remains to be an important chemotherapeutic drug for treating several cancers when targeted therapy is unavailable. Chemoresistance limits the clinical utility of 5-FU, and new strategies are required to overcome the resistance. Reactive oxygen species (ROS) and antioxidants are balanced differently in both normal and cancer cells. Modulating ROS can be one method of overcoming 5-FU resistance. This review summarizes selected compounds and endogenous cellular targets modulating ROS generation to overcome 5-FU resistance.

Oxidative stress on anaerobes

  • Takeuchi, Toru;Shi, Minyi;Kato, Naoki;Watanabe, Kunitomo;Morimoto, Kanehisa
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.142-145
    • /
    • 2002
  • A strict anaerobe, Prevotella melaninogenica is highly sensitive to oxidative stress. Oxidative stress such as exposure to oxygen or addition of hydrogen peroxide, increased 8-hydroxydeoxyguanosine (80HdG), a typical of oxidative DNA damage, and decreased the bacterial cell survival rate. We could detect the generation of reactive oxygen species in P. melaninogenica after exposure to oxygen. UVA irradiation also increased 80HdG in the bacterium. On the other hand, such oxidative stress did not increase 80HdG in a facultative anaerobe. These findings suggest that P. melaninogenica is a suitable material to study the biological effects of oxidative stress, to evaluate antioxidants, and to study the effects of oxygen or reactive oxygen species on molecular evolution.

  • PDF

Mechanism of Photodynamic Therapy using 9-hydroxypheophorbide-alpha on HeLa Cell Lines

  • Ahn, Jin-Chul
    • Biomedical Science Letters
    • /
    • v.15 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • Photodynamic therapy(PDT) is a treatment utilizing the generation of singlet oxygen and other reactive oxygen species(ROS), which selectively accumulate in target cells. The aim of present work is to investigate the photodynamic therapy mechanism of 9-HpbD-a-mediated PDT in HeLa cell lines. We studied the general reactive oxygen species(G-ROS) activation after 9-HpbD-a PDT using fluorescence stain with $H_2DCF-DA$. G-ROS activation observed after 9-HpbD-a PDT and higher activation condition was 1 hour after PDT at 0.5 ${\mu}g/ml$ 9-HpbD-a concentration. Sodium azide and reduced glutathione(the singlet oxygen quencher) could protect HeLa cells from cell death induced by 9-HpbD-a PDT. But D-mannitol(the hydroxyl radical scavenger) could not protect cell death. Singlet oxygen played a decisive role in 9-HpbD-a PDT induced HeLa cell death. Type II reaction was the main type of ROS formation at 9-HpbD-a PDT.

  • PDF

다양한 기체를 사용한 대기압 플라즈마 젯에 대한 세포 내 활성 산소종의 영향 연구

  • Jo, Hye-Min;Kim, Seon-Ja;Jeong, Tae-Hun;Im, Seon-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.542-542
    • /
    • 2013
  • 저온 플라즈마를 발생시키는 대기압 마이크로-플라즈마 젯(Micro-plasma jet)을 이용하여 플라즈마와 세포와의 상호작용에 대한 연구를 진행하였다. 세포의 대사과정에서 생성되는 활성산소 종(Reactive Oxygen Species, ROS)은 세포에 산화 스트레스를 유발시킨다. 이러한 스트레스는 세포 예정사(programmed cell death)의 원인이 된다. 플라즈마 형성 기체로 헬륨, 아르곤, 질소를 사용하여 각각의 기체에 따른 세포의 형태 변화 및 세포 내 활성 산소 종의 영향을 분석하였다. 실험에 사용된 세포는 인체의 폐암 세포[Human lung cancer cell, A549]이며 플라즈마 처리 후 Intracellular ROS assay를 통하여 플라즈마에서 발생되는 활성 산소 종(Reactive Oxygen Species, ROS)이 세포 내에 들어가 활성 산소 종을 증가시키는 것을 확인하였다. 이때, 플라즈마에서 발생되는 활성 산소 종(Reactive Oxygen Species, ROS)들은 광 방출 스펙트럼(Optical Emission Spectroscopy)로 분석하였고, 기체별로 비교하여 보았다. 또한, 이 때 발생되는 플라즈마의 전류-전압 특성에 따른 optical intensity를 비교하였다.

  • PDF

Prostaglandin $F_2{\alpha}$ Controls Reactive Oxygen Species in Bovine Corpus Luteum

  • Lee, Seunghyung;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Luteolysis is a cyclical regression of the corpus luteum in many non-primate mammalian species. Prostaglandin $F_2{\alpha}$($PGF_2{\alpha}$) from the uterus and ovary induces functional and structural luteolysis in bovine. The action of $PGF_2{\alpha}$ is mediated by $PGF_2{\alpha}$ receptor located on the luteal steroidogenic and endothelial cell membranes. $PGF_2{\alpha}$ plays an important role in regulating nitric oxide production in endothelial cells of the bovine corpus luteum. Nitric oxide production and nitric oxide synthase activity are stimulated and induced by $PGF_2{\alpha}$ in luteal endothelial cells. Moreover, the reactive oxygen species inhibits progesterone secretion in bovine luteal cells and induces apoptosis. Thus, the interaction between $PGF_2{\alpha}$ and reactive oxygen species provides important aspects in physiology of the corpus luteum forfunctional and structural luteolysis.

Oxygen Plasma Characterization Analysis for Plasma Etch Process

  • Park, Jin-Su;Hong, Sang-Jeen
    • Journal of the Speleological Society of Korea
    • /
    • no.78
    • /
    • pp.29-31
    • /
    • 2007
  • This paper is devoted to a study of the characterization of the plasma state. For the purpose of monitoring plasma condition, we experiment on reactive ion etching (RIE) process. Without actual etch process, generated oxygen plasma, measurement of plasma emission intensity. Changing plasma process parameters, oxygen flow, RF power and chamber pressure have controlled. Using the optical emission spectroscopy (OES), we conform to the unique oxygen wavelength (777nm), the most powerful intensity region of the designated range. Increase of RF power and chamber pressure, emission intensity is increased. oxygen flow is not affect to emission intensity.

Oxidation of organic contaminants in water by iron-induced oxygen activation: A short review

  • Lee, Changha
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.205-211
    • /
    • 2015
  • Reduced forms of iron, such as zero-valent ion (ZVI) and ferrous ion (Fe[II]), can activate dissolved oxygen in water into reactive oxidants capable of oxidative water treatment. The corrosion of ZVI (or the oxidation of (Fe[II]) forms a hydrogen peroxide ($H_2O_2$) intermediate and the subsequent Fenton reaction generates reactive oxidants such as hydroxyl radical ($^{\bullet}OH$) and ferryl ion (Fe[IV]). However, the production of reactive oxidants is limited by multiple factors that restrict the electron transfer from iron to oxygen or that lead the reaction of $H_2O_2$ to undesired pathways. Several efforts have been made to enhance the production of reactive oxidants by iron-induced oxygen activation, such as the use of iron-chelating agents, electron-shuttles, and surface modification on ZVI. This article reviews the chemistry of oxygen activation by ZVI and Fe(II) and its application in oxidative degradation of organic contaminants. Also discussed are the issues which require further investigation to better understand the chemistry and develop practical environmental technologies.