• Title/Summary/Keyword: Reactive power control

Search Result 732, Processing Time 0.031 seconds

Coordination of UPFC and Reactive Power Sources for Steady-state Voltage Control (정상상태 전압제어를 위한 UPFC와 조상설비의 협조)

  • Park, Ji-Ho;Lee, Sang-Duk;Jyung, Tae-Young;Jeong, Ki-Seok;Baek, Young-Sik;Seo, Gyu-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.921-928
    • /
    • 2011
  • This paper presents a new method of local voltage control to achieve coordinative control among UPFC(Unified Power Flow Controller) and conventional reactive compensation equipments, such as switched-shunt and ULTC(Under-Load Tap Changing) transformer. Reactive power control has various difficult aspects to control because of difficulty of system analysis. Recently, the progress of power electronics technologies has lead to commercial availability of several FACTS(Flexible AC Transmission System) devices. The UPFC(Unified Power Flow Controller) simultaneously allows the independent control of active and reactive power flows as well as control of the voltage profile. When conventional reactive power sources and UPFC are used to control system voltage, the UPFC reacts to the voltage deviation faster than the conventional reactive power sources. Keeping reactive power reserve in an UPFC during steady-state operation is always needed to provide reactive power requirements during emergencies. Therefore, coordination control among UPFC and conventional reactive power sources is needed. This paper describe the method to keep or control the voltage of power system of local area and to manege reactive power reserve using PSS/E with Python. The result of simulation shows that the proposed method can control the local bus voltage within the given voltage limit and manege reactive power reserve.

A Development of Monitoring and Control System for Improved the Voltage Stability in the Power System (전력계통의 전압안정도향상을 위한 감시제어시스템 개발)

  • Lee, Hyun-Chul;Jeoung, Ki-Suk;Park, Ji-Ho;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.437-443
    • /
    • 2013
  • This paper was developed a monitoring and control system to use reactive power control algorithm. This algorithm could be improved voltage stability in power system. This method was controlled the voltage for stability improvement, effective usage of reactive power, and the increase of the power quality. PMS(Power Management System) has been calculate voltage sensitivity, and control reactive power compensation device. The voltage control was used to the FACTS, MSC/MSR(Mechanically Switched Capacitors/Reactors), and tap of transformer in power system. The reactive power devices in power system were control by voltage sensitivity ranking of each bus. Also, to secure momentary reactive power, it had been controlled as the rest of reactive power in the each bus. In here, reactive power has been MSC/MSR. The simulation result, First control was voltage control as fast response control of FACTS. Second control was voltage control through the necessary reactive power calculation as slow response control of MSR/MSR. Third control was secured momentary reactive reserve power. This control was method by cooperative control between FACTS and MSR/MSC. Therefore, the proposed algorithm was had been secured the suitable reactive reserve power in power system.

Coordination Control of Voltage Between STATCOM and Reactive Power Compensation Devices in Steady-State

  • Park, Ji-Ho;Baek, Young-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.689-697
    • /
    • 2012
  • This paper proposes a new coordinated voltage control scheme between STATCOM (Static Synchronous Compensator) and reactive power compensation devices, such as shunt elements(shunt capacitor and shunt reactor) and ULTC(Under-Load Tap Changer) transformer in a local substation. If STATCOM and reactive power compensators are cooperatively used with well designed control algorithm, the target of the voltage control can be achieved in a suddenly changed power system. Also, keeping reactive power reserve in a STATCOM during steady-state operation is always needed to provide reactive power requirements during emergencies. This paper describes the coordinative voltage control method to keep or control the voltage of power system in an allowable range of steady-state and securing method of momentary reactive power reserve using PSS/E with Python. In the proposed method of this paper, the voltage reference of STATCOM is adjusted to keep the voltage of the most sensitive bus to the change of loads and other reactive power compensators also are settled to supply the reactive power shortage in out range of STATCOM to cope with the change of loads. As the result of simulation, it is possible to keep the load bus voltage in limited range and secure the momentary reactive power reserve in spite of broad load range condition.

HVDC System Design for AC Network Reactive Power Control (AC 계통 무효전력 제어를 위한 HVDC 시스템 설계)

  • Choi, Soon-Ho;Choi, Jang-Hum;Kim, Chan-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.8-20
    • /
    • 2013
  • This paper deals with the concept design of HVDC system for controlling AC network reactive power. HVDC system can control active power and reactive power and the control concept of reactive power is similar to SVC(Static Var Compensator). Reactive power is controlled by adjusting firing angle of HVDC system under the condition that AC filters are switched. Reactive power depends on AC voltage condition, considering the steady-state and transient state to maintain the stable operation of AC network in the viewpoint of voltage stability. Therefore, in the design stage of HVDC, the reactive power required in the AC network must be considered. For the calculation of operation angle in HVDC system, the expected reactive power demand and supply status is examined at each AC system bus. The required reactive power affects the determination of the operation angle of HVDC. That is, the range of "control deadband" of operation angle should have the capability supplying the required reactive power. Finally, the reactive power control concepts is applied to 1GW BTB Pyeongtaek-Dangjin HVDC system.

Reactive Power Control Algorithm of Grid-Connected Inverter at the Point of Common Coupling With Compensation of Series and Parallel Impedances (직병렬 임피던스 보상을 통한 계통 연계 분산전원 인버터의 PCC 무효전력 제어 알고리즘)

  • Heo, Cheol-Young;Song, Seung-Ho;Kim, Yong-Rae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.92-99
    • /
    • 2022
  • Due to space and geographical constraints, the power source may be located outside the island area, resulting in the considerable length of transmission line. In these cases, when an active power is transmitted, unexpected reactive power is generated at a point of common coupling (PCC). Unlike the power transmitted from the power generation source, the reactive power adversely affects the system. This study proposes a new algorithm that controls reactive power at PCC. Causes of reactive power errors are separated into parallel and series components, which allows the algorithm to compensate the reactive current of the inverter output and control reactive power at the PCC through calculations from the impedance, voltage, and current. The proposed algorithm has economic advantages by controlling the reactive power with the inverter of the power source itself, and can flexibly control power against voltage and output variations. Through the simulation, the algorithm was verified by implementing a power source of 3 [kVA] capacity connected to the low voltage system and of 5 [MVA] capacity connected to the extra-high voltage system. Furthermore, a power source of 3 [kVA] capacity inverter is configured and connected to a mock grid, then confirmed through experiments.

A Study on the Decoupled Control of the Active and Reactive Power using Instantaneous Power Control Theory (순시전력 제어 이론을 이용한 유/무효전력의 독립제어에 관한 연구)

  • Kim, Eung-Sang;Kim, Ji-Won;Kim, Yeong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.678-682
    • /
    • 1999
  • In this paper, we propose the algorithm which can control active power and reactive power independently in Battery Energy Storage System. The proposed algorithm is based on the instantaneous power theory that the inner product of the voltage vector and current vector represents the active power and the cross product of those represents the reactive power, and it can control active power and reactive power independently. To verify the validity of the proposed algorithm, we make model of the real power system in th KERI and simulate this algorithm. As a result of this simulation, we verified that the proposed algorithm can control active power and reactive power independently.

  • PDF

Design of a Cooperative Voltage Control System Between EMS (VMS) and DMS

  • Shin, Jeonghoon;Lee, Jaegul;Nam, Suchul;Song, Jiyoung;Oh, Seungchan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.279-284
    • /
    • 2020
  • This paper presents the conceptual design of a cooperative control with Energy Management System (EMS) and Distribution Management System (DMS). This control enables insufficient reactive power reserve in a power transmission system to be supplemented by surplus reactive power in a power distribution system on the basis of the amount of the needed reactive power reserve calculated by the EMS. This can be achieved, because increased numbers of microgrids with distributed energy resources will be installed in the distribution system. Furthermore, the DMS with smart control strategy by using surplus reactive power in the distribution system of the area has been gradually installed in the system as well. Therefore, a kind of hierarchical voltage control and cooperative control scheme could be considered for the effective use of energy resources. A quantitative index to evaluate the current reactive power reserve of the transmission system is also required. In the paper, the algorithm for the whole cooperative control system, including Area-Q Indicator (AQI) as the index for the current reactive power reserve of a voltage control area, is devised and presented. Finally, the performance of the proposed system is proven by several simulation studies.

A Study on Active and Reactive Power Control for Efficient Operations of Wind Farm (유.무효 전력 제어를 통한 풍력발전단지의 효율적인 운전)

  • Jang, Sung-Il;Kim, Ji-Won;Kim, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1351-1354
    • /
    • 2002
  • Wind farm which are composed with wind turbine generators can be a good alternatives to solve environmental problem and solutions to cope with energy crisis for using wind energy. Until now, these wind turbine generators have been being studied on the viewpoint of only active power control for reducing the burden of main grid. In this control scheme, we might demand a reactive power compensator in order to make reparation for the reactive power produced from wind turbine generator itself. Therefore, if the reactive power as well as active power of wind turbine generator were controlled according to the demand of reactive power, the installation of a additional reactive power compensator could be reduced. This paper presents the control method of a active and reactive power for wind turbine generators by means of SVPWM(Space Vector Pulse Width Modulation) inverting method and describes a operational coordination of wind turbine generators. The proposed power control algorithm can simply produce the output power of wind turbine generator needed in wind farm, which can reduce the power of main grid more and exclude a supplementary reactive power compensator. We assumed that wind farm are composed with two kinds of wind turbine generators, AC/DC/AC and induction generator types.

  • PDF

Secondary Voltage Control for Reactive Power Sharing in an Islanded Microgrid

  • Guo, Qian;Wu, Hongyan;Lin, Liaoyuan;Bai, Zhihong;Ma, Hao
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.329-339
    • /
    • 2016
  • Owing to mismatched feeder impedances in an islanded microgrid, the conventional droop control method typically results in errors in reactive power sharing among distributed generation (DG) units. In this study, an improved droop control strategy based on secondary voltage control is proposed to enhance the reactive power sharing accuracy in an islanded microgrid. In a DG local controller, an integral term is introduced into the voltage droop function, in which the voltage compensation signal from the secondary voltage control is utilized as the common reactive power reference for each DG unit. Therefore, accurate reactive power sharing can be realized without any power information exchange among DG units or between DG units and the central controller. Meanwhile, the voltage deviation in the microgrid common bus is removed. Communication in the proposed strategy is simple to implement because the information of the voltage compensation signal is broadcasted from the central controller to each DG unit. The reactive power sharing accuracy is also not sensitive to time-delay mismatch in the communication channels. Simulation and experimental results are provided to validate the effectiveness of the proposed method.

Active Frequency Drift Method for Islanding Detection Applied to Micro-inverter with Uncontrollable Reactive Power

  • Kwak, Raeho;Lee, June-Hee;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1918-1927
    • /
    • 2016
  • This paper proposes active frequency drift (AFD) as an anti-islanding method applied to micro-inverters with uncontrollable reactive power. When using ordinary inverter topologies, such as full bridge inverters in photovoltaic systems, the islanding phenomenon can be detected with reactive power-based methods, such as reactive power variation. However, when the inverter topology cannot control the reactive power, conventional anti-islanding methods with reactive power cannot be utilized. In this work, the topology used in this paper cannot control the reactive power. Thus, an anti-islanding method that can be used in topologies that cannot control the reactive power is proposed. The conventional anti-islanding method of the topology that cannot control reactive power is introduced and analyzed. Unlike the conventional AFD method, the proposed method extends a zero current interval every predetermined cycle. The proposed method offers certain advantages over conventional AFD methods, such as total harmonic distortion. The proposed method is validated through simulation and experiment.