• Title/Summary/Keyword: Reactivity worth

Search Result 39, Processing Time 0.028 seconds

Reactivity balance for a soluble boron-free small modular reactor

  • van der Merwe, Lezani;Hah, Chang Joo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.648-653
    • /
    • 2018
  • Elimination of soluble boron from reactor design eliminates boron-induced reactivity accidents and leads to a more negative moderator temperature coefficient. However, a large negative moderator temperature coefficient can lead to large reactivity feedback that could allow the reactor to return to power when it cools down from hot full power to cold zero power. In soluble boron-free small modular reactor (SMR) design, only control rods are available to control such rapid core transient. The purpose of this study is to investigate whether an SMR would have enough control rod worth to compensate for large reactivity feedback. The investigation begins with classification of reactivity and completes an analysis of the reactivity balance in each reactor state for the SMR model. The control rod worth requirement obtained from the reactivity balance is a minimum control rod worth to maintain the reactor critical during the whole cycle. The minimum available rod worth must be larger than the control rod worth requirement to manipulate the reactor safely in each reactor state. It is found that the SMR does have enough control rod worth available during rapid transient to maintain the SMR at subcritical below k-effectives of 0.99 for both hot zero power and cold zero power.

CEFR control rod drop transient simulation using RAST-F code system

  • Tuan Quoc Tran;Xingkai Huo;Emil Fridman;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4491-4503
    • /
    • 2023
  • This study aimed to verify and validate the transient simulation capability of the hybrid code system RAST-F for fast reactor analysis. For this purpose, control rod (CR) drop experiments involving eight separate CRs and six CR groups in the China Experimental Fast Reactor (CEFR) start-up tests were utilized to simulate the CR drop transient. The RAST-F numerical solution, including the neutron population, time-dependent reactivity, and CR worth, was compared against the measurement values obtained from two out-of-core detectors. Moreover, the time-dependent reactivity and CR worth from RAST-F were verified against the results obtained by the Monte Carlo code Serpent using continuous energy nuclear data. A code-to-code comparison between Serpent and RAST-F showed good agreement in terms of time-dependent reactivity and CR worth. The discrepancy was less than 160 pcm for reactivity and less than 110 pcm for CR worth. RAST-F solution was almost identical to the measurement data in terms of neutron population and reactivity. All the calculated CR worth results agreed with experimental results within two standard deviations of experimental uncertainty for all CRs and CR groups. This work demonstrates that the RAST-F code system can be a potential tool for analyzing time-dependent phenomena in fast reactors.

Measurement of safety rods reactivity worth by advanced source jerk method in HWZPR

  • Nasrazadani, Z.;Ahmadi, A.;Khorsandi, J.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.963-967
    • /
    • 2019
  • Accurate measurement of the reactivity worth of safety rods is very important for the safe reactor operation, in normal and emergency conditions. In this paper, the reactivity worth of safety rods in Heavy Water Zero Power Reactor (HWZPR) in the new lattice pitch is measured by advanced source jerk method. The average of the results related to two different detectors is equal to 29.88 mk. In order to verify the result, this parameter was compared to the previously measured value by subcritical to critical approach. Different experiment results are finally compared with corresponding calculated result. Difference between the average experimental and calculated results is equal to 2.2%.

EVALUATION OF THE APPLICABLE REACTIVITY RANGE OF A REACTIVITY COMPUTER FOR A CANDU-6 REACTOR

  • Lee, Eun Ki;Park, Dong Hwan;Lee, Whan Soo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.183-194
    • /
    • 2014
  • Recently, a CANDU digital reactivity computer system (CDRCS) to measure the worth of the liquid zone controller in a CANDU-6 was developed and successfully applied to a physics test of refurbished Wolsong Unit 1. In advance of using the CDRCS, its measureable reactivity range should be investigated and confirmed. There are two reasons for this investigation. First, the CANDU-6 has a larger reactor and smaller excore detectors than a general PWR and consequently the measured reactivity is likely to reflect the peripheral power variation only, not the whole core. The second reason is photo neutrons generated from the interaction of the moderator and gamma-rays, which are never considered in a PWR. To evaluate the limitations of the CDRCS, several tens of three-dimensional steady and transient simulations were performed. The simulated detector signals were used to obtain the dynamic reactivity. The difference between the dynamic reactivity and the static worth increases in line with the water level changes. The maximum allowable reactivity was determined to be 1.4 mk in the case of CANDU-6 by confining the difference to less than 1%.

Evaluation of neutronics parameters during RSG-GAS commissioning by using Monte Carlo code

  • Surian Pinem;Wahid Luthfi;Peng Hong Liem;Donny Hartanto
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1775-1782
    • /
    • 2023
  • Several reactor physics commissioning experiments were conducted to obtain the neutronic parameters at the beginning of the G.A. Siwabessy Multi-purpose Reactor (RSG-GAS) operation. These parameters are essential for the reactor to safety operate. Leveraging the experimental data, this study evaluated the calculated core reactivity, control rod reactivity worth, integral control rod reactivity curve, and fuel reactivity. Calculations were carried out with Serpent 2 code using the latest neutron cross-section data ENDF/B-VIII.0. The criticality calculations were carried out for the RSG-GAS first core up to the third core configuration, which has been done experimentally during these commissioning periods. The excess reactivity for the second and third cores showed a difference of 510.97 pcm and 253.23 pcm to the experiment data. The calculated integral reactivity of the control rod has an error of less than 1.0% compared to the experimental data. The calculated fuel reactivity value is consistent with the measured data, with a maximum error of 2.12%. Therefore, it can be concluded that the RSG-GAS reactor core model is in good agreement to reproduce excess reactivity, control rod worth, and fuel element reactivity.

Neutronic assessment of BDBA scenario at the end of Isfahan MNSR core life

  • Ahmadi, M.;Pirouzmand, A.;Rabiee, A.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1037-1042
    • /
    • 2018
  • The present study aims to assess the excess induced reactivity in a Miniature Neutron Source Reactor (MNSR) for a Beyond Design Basis Accident (BDBA) scenario. The BDBA scenario as defined in the Safety Analysis Report (SAR) of the reactor involves sticking of the control rod and filling of the inner and outer irradiation sites with water. At the end of the MNSR core life, 10.95 cm of Beryllium is added to the top of the core as a reflector which affects some neutronic parameters such as effective delayed neutrons fraction (${\beta}_{eff}$), the reactivity worth of inner and outer irradiation sites that are filled with water and the reactivity worth of the control rod. Given those influences and changes, new neutronic calculations are required to be able to demonstrate the reactor safety. Therefore, a validated MCNPX model is used to calculate all neutronic parameters at the end of the reactor core life. The calculations show that the induced reactivity in the BDBA scenario increases at the end of core life to $7.90{\pm}0.01mk$ which is significantly higher than the induced reactivity of 6.80 mk given in the SAR of MNSR for the same scenario but at the beginning of the core's life. Also this value is 3.90 mk higher than the maximum allowable operational limit (i.e. 4.00 mk).

A critical study on best methodology to perform UQ for RIA transients and application to SPERT-III experiments

  • Dokhane, A.;Vasiliev, A.;Hursin, M.;Rochman, D.;Ferroukhi, H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1804-1812
    • /
    • 2022
  • The aim of this paper is to assess the reliability and accuracy of the PSI standard method, used in many previous works, for the quantification of ND uncertainties in the SPERT-III RIA transient, by quantifying the discrepancy between the actual inserted reactivity and the original static reactivity worth and their associated uncertainties. The assessment has shown that the inherent S3K neutron source renormalization scheme, introduced before starting the transient, alters the original static reactivity worth of the transient CR and reduces the associated uncertainty due to the ND perturbation. In order to overcome these limitations, two additional methods have been developed based on CR adjustment. The comparative study performed between the three methods has showed clearly the high sensitivity of the obtained results to the selected approach and pointed out the importance of using the right procedure in order to simulate correctly the effect of ND uncertainties on the overall parameters in a RIA transient. This study has proven that the approach that allows matching the original static reactivity worth and starting the transient from criticality is the most reliable method since it conservatively preserves the effect of the ND uncertainties on the inserted reactivity during a RIA transient.

Analysis of the CREOLE experiment on the reactivity temperature coefficient of the UO2 light water moderated lattices using Monte Carlo transport calculations and ENDF/B-VII.1 nuclear data library

  • El Ouahdani, S.;Erradi, L.;Boukhal, H.;Chakir, E.;El Bardouni, T.;Boulaich, Y.;Ahmed, A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1120-1130
    • /
    • 2020
  • The CREOLE experiment performed In the EOLE critical facility located In the Nuclear Center of CADARACHE - CEA have allowed us to get interesting and complete experimental information on the temperature effects in the light water reactor lattices. To analyze these experiments with accuracy an elaborate calculation scheme using the Monte Carlo method implemented in the MCNP6.1 code and the ENDF/B-VII.1 cross section library has been developed. We have used the ENDF/B-VII.1 data provided with the MCNP6.1.1 version in ACE format and the Makxsf utility to handle the data in the specific temperatures not available in the MCNP6.1.1 original library. The main purpose of this analysis is the qualification of the ENDF/B-VII.1 nuclear data for the prediction of the Reactivity Temperature Coefficient while ensuring the ability of the MCNP6.1 system to model such a complex experiment as CREOLE. We have analyzed the case of UO2 lattice with 1166 ppm of boron in ordinary water moderator in specified temperatures. A detailed comparison of the calculated effective multiplication factors with the reference ones [1] in room temperature presented in this work shows a good agreement demonstrating the validation of our 3D calculation model. The discrepancies between calculations and the differential measurements of the Reactivity Temperature Coefficient for the analyzed configuration are relatively small: the maximum discrepancy doesn't exceed 1,1 pcm/℃. In addition to the analysis of direct differential measurements of the reactivity temperature coefficient performed in the poisoned UO2 lattice configuration, we have also analyzed integral measurements in UO2 clean lattice configuration using equivalency of the integral temperature reactivity worth with the driver core fuel reactivity worth and soluble boron reactivity worth. In this case both of the ENDF/B-VII.1 and JENDL.4 libraries were used in our analysis and the obtained results are very similar.

Neutronics analysis of JSI TRIGA Mark II reactor benchmark experiments with SuperMC3.3

  • Tan, Wanbin;Long, Pengcheng;Sun, Guangyao;Zou, Jun;Hao, Lijuan
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1715-1720
    • /
    • 2019
  • Jozef Stefan Institute (JSI), TRIGA Mark II reactor employs the homogeneous mixture of uranium and zirconium hydride fuel type. Since its upgrade, a series of fresh fuel steady state experimental benchmarks have been conducted. The benchmark results have provided data for testing computational neutronics codes which are important for reactor design and safety analysis. In this work, we investigated the JSI TRIGA Mark II reactor neutronics characteristics: the effective multiplication factor and two safety parameters, namely the control rod worth and the fuel temperature reactivity coefficient using SuperMC. The modeling and real-time cross section generation methods of SuperMC were evaluated in the investigation. The calculation analysis indicated the following: the effective multiplication factor was influenced by the different cross section data libraries; the control rod worth evaluation was better with Monte Carlo codes; the experimental fuel temperature reactivity coefficient was smaller than calculated results due to change in water temperature. All the results were in good agreement with the experimental values. Hence, SuperMC could be used for the designing and benchmarking of other TRIGA Mark II reactors.

Core analysis of accident tolerant fuel cladding for SMART reactor under normal operation and rod ejection accident using DRAGON and PARCS

  • Pourrostam, A.;Talebi, S.;Safarzadeh, O.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.741-751
    • /
    • 2021
  • There has been a deep interest in trying to find better-performing fuel clad motivated by the desire to decrease the likelihood of the reactor barrier failure like what happened in Fukushima in recent years. In this study, the effect of move towards accident tolerant fuel (ATF) cladding as the most attracting concept for improving reactor safety is investigated for SMART modular reactor. These reactors have less production cost, short construction time, better safety and higher power density. The SiC and FeCrAl materials are considered as the most potential candidate for ATF cladding, and the results are compared with Zircaloy cladding material from reactor physics point of view. In this paper, the calculations are performed by generating PMAX library by DRAGON lattice physics code to be used for further reactor core analysis by PARCS code. The differential and integral worth of control and safety rods, reactivity coefficient, power and temperature distributions, and boric acid concentration during the cycle are analyzed and compared from the conventional fuel cladding. The rod ejection accident (REA) is also performed to study how the power changed in response to presence of the ATF cladding in the reactor core. The key quantitative finding can be summarized as: 20 ℃ (3%) decrease in average fuel temperature, 33 pcm (3%) increase in integral rod worth and cycle length, 1.26 pcm/℃ (50%) and 1.05 pcm/℃ (16%) increase in reactivity coefficient of fuel and moderator, respectively.