• 제목/요약/키워드: Reactor Internal Temperature

검색결과 100건 처리시간 0.023초

Elevated Temperature Design of KALIMER Reactor Internals Accounting for Creep and Stress-Rupture Effects

  • Koo, Gyeong-Hoi;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.566-594
    • /
    • 2000
  • In most LMFBR(Liquid Metal Fast Breed Reactor) design, the operating temperature is very high and the time-dependent creep and stress-rupture effects become so important in reactor structural design. Therefore, unlike with conventional PWR, the normal operating conditions can be basically dominant design loading because the hold time at elevated temperature condition is so long and enough to result in severe total creep ratcheting strains during total service lifetime. In this paper, elevated temperature design of the conceptually designed baffle annulus regions of KALIMER(Korea Advanced Liquid MEtal Reactor) reactor internal strictures is carried out for normal operating conditions which have the operating temperature 53$0^{\circ}C$ and the total service lifetime of 30 years. For the elevated temperature design of reactor internal structures, the ASME Code Case N-201-4 is used. Using this code, the time-dependent stress limits, the accumulated total inelastic strain during service lifetime, and the creep-fatigue damages are evaluated with the calculation results by the elastic analysis under conservative assumptions. The application procedures of elevated temperature design of the reactor internal structures using ASME Code Case N-201-4 with the elastic analysis method are described step by step in detail. This paper will be useful guide for actual application of elevated temperature design of various reactor types accounting for creep and stress-rupture effects.

  • PDF

액체금속원자로 핵연료집합체의 내부 유로폐쇄 열수력 해석 (Thermal-Hydraulic Analysis of Internal Flow Blockage within Fuel Assembly of Nuclear Liquid-Metal Fast Reactor)

  • 권영민;한도희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.47-50
    • /
    • 2002
  • The numerical simulation of a 271-rod fuel assembly of nuclear Liquid-Metal Fast Reactor (LMFR) with an infernal blockage has been carried out. Internal blockage within a subassembly is addressed in the safety assessment because it potentially has very serious consequences for the reactor as a whole. Three dimensional calculations were performed using the SABRE4 computer code for the range of blockage positions and sizes to investigate the seriousness and detectability of the internal blockage. The magnitude and location of the peak temperatures together with the temperature distribution at the subassembly exit were calculated in order to look at the potential for damage within the subassembly, and the possibility of blockage detection. The analysis result shows that the 6-subchannel blockage causes large temperature rise within a assembly with practically no change in mixed mean temperature at the assembly exit.

  • PDF

중성자 신호이용 원자로 내부 구조물 감시시스템 하드웨어 설계 (Design of Hardward Diagnostic System for Reactor Internal Structures Using Neutron Noise)

  • 박종범;박진호;황충환;김수홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2166-2168
    • /
    • 2001
  • Reactor Noise is defined as the fluctuations of measured instrumentation signals during full-power operation of reactor which have informations on reactor system dynamics such as neutron kinetics. The Reactor internal structures which consist of many complex components are subjected to flow-induced vibration due to high temperature and pressure in reactor coolant system. The above flow-induced vibration causes degradation of structural integrity of the reactor and may result in loosing mechanical binding component which might impact other equipment and component or cause flow blockage. It is important to analyze reactor noise signal for the early detection of potential problem or failure in order to diagnosis reactor integrity in the point of view of safety and plant economics. Detailed design of hardware diagnostic system reactor internal structures using neutron noise(RIDS).

  • PDF

중성자 신호이용 원자로 내부 구조물 감시시스템 구성 (Composition of Diagnostic System for Reactor Internal Structures Using Neutron Noise)

  • 박종범;김종봉;박진호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2252-2254
    • /
    • 2002
  • The Reactor internal structures which consist of many complex components are subjected to flow-induced vibration due to high temperature and pressure in Reactor coolant system. The above flow-induced vibration causes degradation of structural integrity of the Reactor and may result in loosing mechanical binding component which might impact other equipment and component or cause flow blockage. It is important to analyze reactor noise signal for the early detection of potential problem or failure in order to diagnosis reactor integrity in the point of view of safety and plant economics. Detailed composition of diagnostic system reactor internal structures using neutron noise(RIDS).

  • PDF

Failure Evaluation Plan of a Reactor Internal Components of a Decommissioned Plant

  • Hwang, Seong Sik;Kim, Sung Woo;Choi, Min Jae;Cho, Sung Hwan;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • 제20권4호
    • /
    • pp.189-195
    • /
    • 2021
  • A technology for designing and licensing a dedicated radiation shielding facility needs to be developed for safe and efficient operation an R&D center. Technology development is important for smooth operation of such facilities. Causes of damage to internal structures (such as baffle former bolt (BFB) of pressurized water reactor) of a nuclear power reactor should be analyzed along with prevention and countermeasures for similar cases of other plants. It is important to develop technologies that can comprehensively analyze various characteristics of internal structures of long term operated reactors. In high-temperature, high-pressure operating environment of nuclear power plants, cases of BFB cracks caused by irradiated assisted stress corrosion cracks (IASCC) have been reported overseas. The integrity of a reactor's internal structure has emerged as an important issue. Identifying the cause of the defect is requested by the Korean regulatory agency. It is also important to secure a foundation for testing technology to demonstrate the operating environment for medium-level irradiated testing materials. The demonstration testing facility can be used for research on material utilization of the plant, which might have highest fluence on the internal structure of a reactor globally.

Computational Study of the Mixed Cooling Effects on the In-Vessel Retention of a Molten Pool in a Nuclear Reactor

  • Kim, Byung-Seok;Ahn, Kwang-Il;Sohn, Chang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.990-1001
    • /
    • 2004
  • The retention of a molten pool vessel cooled by internal vessel reflooding and/or external vessel reactor cavity flooding has been considered as one of severe accident management strategies. The present numerical study investigates the effect of both internal and external vessel mixed cooling on an internally heated molten pool. The molten pool is confined in a hemispherical vessel with reference to the thermal behavior of the vessel wall. In this study, our numerical model used a scaled-down reactor vessel of a KSNP (Korea Standard Nuclear Power) reactor design of 1000 MWe (a Pressurized Water Reactor with a large and dry containment). Well-known temperature-dependent boiling heat transfer curves are applied to the internal and external vessel cooling boundaries. Radiative heat transfer has been considered in the case of dry internal vessel boundary condition. Computational results show that the external cooling vessel boundary conditions have better effectiveness than internal vessel cooling in the retention of the melt pool vessel failure.

Ultrasonic ranging technique for obstacle monitoring above reactor core in prototype generation IV sodium-cooled fast reactor

  • Kim, Hoe-Woong;Joo, Young-Sang;Park, Sang-Jin;Kim, Sung-Kyun
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.776-783
    • /
    • 2020
  • As the refueling of a sodium-cooled fast reactor is conducted by rotating part of the reactor head without opening it, the monitoring of existing obstacles that can disturb the rotation of the reactor head is one of the most important issues. This paper deals with the ultrasonic ranging technique that directly monitors the existence of possible obstacles located in a lateral gap between the upper internal structure and the reactor core in a prototype generation IV sodium-cooled fast reactor (PGSFR). A 10 m long plate-type ultrasonic waveguide sensor, whose feasibility has been successfully demonstrated through preliminary tests, was employed for the ultrasonic ranging technique. The design of the sensor's wave radiating section was modified to improve the radiation performance, and the radiated field was investigated through beam profile measurements. A test facility simulating the lower part of the upper internal structure and the upper part of the reactor core with the same shapes and sizes as those in the PGSFR was newly constructed. Several under-water performance tests were then carried out at room temperature to investigate the applicability of the developed ranging technique using the plate-type ultrasonic waveguide sensor with the actual geometry of the PGSFR's internal structures.

Thermal-hydraulic behavior simulations of the reactor cavity cooling system (RCCS) experimental facility using Flownex

  • Marcos S. Sena;Yassin A. Hassan
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3320-3325
    • /
    • 2023
  • The scaled water-cooled Reactor Cavity Cooling System (RCCS) experimental facility reproduces a passive safety feature to be implemented in Generation IV nuclear reactors. It keeps the reactor cavity and other internal structures in operational conditions by removing heat leakage from the reactor pressure vessel. The present work uses Flownex one-dimensional thermal-fluid code to model the facility and predict the experimental thermal-hydraulic behavior. Two representative steady-state cases defined by the bulk volumetric flow rate are simulated (Re = 2,409 and Re = 11,524). Results of the cavity outlet temperature, risers' temperature profile, and volumetric flow split in the cooling panel are also compared with the experimental data and RELAP system code simulations. The comparisons are in reasonable agreement with the previous studies, demonstrating the ability of Flownex to simulate the RCCS behavior. It is found that the low Re case of 2,409, temperature and flow split are evenly distributed across the risers. On the contrary, there's an asymmetry trend in both temperature and flow split distributions for the high Re case of 11,524.

중대사고에서의 열적 연화를 고려한 원자로 하부구조의 유한요소 극한해석 (Finite Element Limit Analysis of a Nuclear Reactor Lower Head Considering Thermal Softening in Severe Accident)

  • 김기풍;허훈;박재홍;이종인
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.782-787
    • /
    • 2001
  • This paper is concerned with the global rupture of a nuclear reactor pressure vessel(RPV) in a severe accident. During the severe reactor accident of molten core, the temperature and the pressure in the nuclear reactor rise to a certain level depending on the initial and subsequent condition of a severe accident. While the rise of the temperature cause the thermal softening of RPV material, the rise of the internal pressure could cause failure of the RPV lower head. The global rupture of an RPV is simulated by finite element limit analysis for the collapse pressure and mode and this analysis results have been compared with a variation of the internal pressure of RPV. The finite element limit method is a systematic tool to secure the safety criteria of a nuclear reactor and to evaluate the in-vessel corium retention.

  • PDF

소규모 반응로를 이용한 감압 잔사유지 연소실험 (The Experimental Studies of Vacuum Residue Combustion in a Small Scale Reactor)

  • 박호영;김영주;김태형;서상일
    • 에너지공학
    • /
    • 제14권4호
    • /
    • pp.268-276
    • /
    • 2005
  • 액체연료(중유)공급량 기준 20kg/hr규모의 반응로에서 증기분무 내부 혼합식 노즐을 이용하여 잔사유의 연소실험을 수행하였다. 본 실험에서 사용한 감압 잔사유는 점도가 높고 황함량, 잔류탄소와 금속성분의 함량도 높았다. 잔사유의 착화를 위해서는 반응로를 일정온도까지 예열하여야 했으며 이는 LPG를 이용하였다. 잔사유 공급량을 변화시키면서 축방향 및 반경방향의 로내 가스 온도, 주요 가스농도 및 채집된 고체 입자를 분석하였다. 잔사유의 주반응영역은 버너 팁으로부터 약 1 m 근방에서 형성되었으며 이는 축방향 가스 온도, 농도 분포 및 입자의 크기로부터 확인할 수 있었고, 반응로의 하류에서는 완전 확립된 온도분포를 보여주고 있었다. 고체 입자의 SEM 분석으로부터 잔류 탄소입자는 기공이 많은 형태를 띠고 있었다.