• Title/Summary/Keyword: Real-Time Source Classification

Search Result 13, Processing Time 0.024 seconds

A Study on the Development of an Automatic Classification System for Life Safety Prevention Service Reporting Images through the Development of AI Learning Model and AI Model Serving Server (AI 학습모델 및 AI모델 서빙 서버 개발을 통한 생활안전 예방 서비스 신고 이미지 자동분류 시스템 개발에 대한 연구)

  • Young Sic Jeong;Yong-Woon Kim;Jeongil Yim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.432-438
    • /
    • 2023
  • Purpose: The purpose of this study is to enable users to conveniently report risks by automatically classifying risk categories in real time using AI for images reported in the life safety prevention service app. Method: Through a system consisting of a life safety prevention service platform, life safety prevention service app, AI model serving server and sftp server interconnected through the Internet, the reported life safety images are automatically classified in real time, and the AI model used at this time An AI learning algorithm for generation was also developed. Result: Images can be automatically classified by AI processing in real time, making it easier for reporters to report matters related to life safety.Conclusion: The AI image automatic classification system presented in this paper automatically classifies reported images in real time with a classification accuracy of over 90%, enabling reporters to easily report images related to life safety. It is necessary to develop faster and more accurate AI models and improve system processing capacity.

Real-Time Source Classification with an Waveform Parameter Filtering of Acoustic Emission Signals (음향방출 파형 파라미터 필터링 기법을 이용한 실시간 음원 분류)

  • Cho, Seung-Hyun;Park, Jae-Ha;Ahn, Bong-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.165-173
    • /
    • 2011
  • The acoustic emission(AE) technique is a well established method to carry out structural health monitoring(SHM) of large structures. However, the real-time monitoring of the crack growth in the roller coaster support structures is not easy since the vehicle operation produces very large noise as well as crack growth. In this investigation, we present the waveform parameter filtering method to classify acoustic sources in real-time. This method filtrates only the AE hits by the target acoustic source as passing hits in a specific parameter band. According to various acoustic sources, the waveform parameters were measured and analyzed to verify the present filtering method. Also, the AE system employing the waveform parameter filter was manufactured and applied to the roller coaster support structure in an actual amusement park.

Real-time automated detection of construction noise sources based on convolutional neural networks

  • Jung, Seunghoon;Kang, Hyuna;Hong, Juwon;Hong, Taehoon;Lee, Minhyun;Kim, Jimin
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.455-462
    • /
    • 2020
  • Noise which is unwanted sound is a serious pollutant that can affect human health, as well as the working and living environment if exposed to humans. However, current noise management on the construction project is generally conducted after the noise exceeds the regulation standard, which increases the conflicts with inhabitants near the construction site and threats to the safety and productivity of construction workers. To overcome the limitations of the current noise management methods, the activities of construction equipment which is the main source of construction noise need to be managed throughout the construction period in real-time. Therefore, this paper proposed a framework for automatically detecting noise sources in construction sites in real-time based on convolutional neural networks (CNNs) according to the following four steps: (i) Step 1: Definition of the noise sources; (ii) Step 2: Data preparation; (iii) Step 3: Noise source classification using the audio CNN; and (iv) Step 4: Noise source detection using the visual CNN. The short-time Fourier transform (STFT) and temporal image processing are used to contain temporal features of the audio and visual data. In addition, the AlexNet and You Only Look Once v3 (YOLOv3) algorithms have been adopted to classify and detect the noise sources in real-time. As a result, the proposed framework is expected to immediately find construction activities as current noise sources on the video of the construction site. The proposed framework could be helpful for environmental construction managers to efficiently identify and control the noise by automatically detecting the noise sources among many activities carried out by various types of construction equipment. Thereby, not only conflicts between inhabitants and construction companies caused by construction noise can be prevented, but also the noise-related health risks and productivity degradation for construction workers and inhabitants near the construction site can be minimized.

  • PDF

Design of Low Cost Real-Time Audience Adaptive Digital Signage using Haar Cascade Facial Measures

  • Lee, Dongwoo;Kim, Daehyun;Lee, Junghoon;Lee, Seungyoun;Hwang, Hyunsuk;Mariappan, Vinayagam;Lee, Minwoo;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.51-57
    • /
    • 2017
  • Digital signage is becoming part of daily life across a wide range of visual advertisements segments market used in stations, hotels, retail stores, hotels, etc. The current digital signage system used in market is generally works on limited user interactivity with static contents. In this paper, a new approach is proposed using computer vision based dynamic audience adaptive cost-effective digital signage system. The proposed design uses the Camera attached Raspberry Pi Open source platform to employ the real-time audience interaction using computer vision algorithms to extract facial features of the audience. The real-time facial features are extracted using Haar Cascade algorithm which are used for audience gender specific rendering of dynamic digital signage content. The audience facial characterization using Haar Cascade is evaluated on the FERET database with 95% accuracy for gender classification. The proposed system, developed and evaluated with male and female audiences in real-life environments camera embedded raspberry pi with good level of accuracy.

Knowledge Transfer Using User-Generated Data within Real-Time Cloud Services

  • Zhang, Jing;Pan, Jianhan;Cai, Zhicheng;Li, Min;Cui, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.77-92
    • /
    • 2020
  • When automatic speech recognition (ASR) is provided as a cloud service, it is easy to collect voice and application domain data from users. Harnessing these data will facilitate the provision of more personalized services. In this paper, we demonstrate our transfer learning-based knowledge service that built with the user-generated data collected through our novel system that deliveries personalized ASR service. First, we discuss the motivation, challenges, and prospects of building up such a knowledge-based service-oriented system. Second, we present a Quadruple Transfer Learning (QTL) method that can learn a classification model from a source domain and transfer it to a target domain. Third, we provide an overview architecture of our novel system that collects voice data from mobile users, labels the data via crowdsourcing, utilises these collected user-generated data to train different machine learning models, and delivers the personalised real-time cloud services. Finally, we use the E-Book data collected from our system to train classification models and apply them in the smart TV domain, and the experimental results show that our QTL method is effective in two classification tasks, which confirms that the knowledge transfer provides a value-added service for the upper-layer mobile applications in different domains.

Near Real Time Flood Area Analysis Based on SAR Image and GIS (GIS와 SAR 영상을 연계한 근 실시간 홍수지역 분석)

  • Sohn, Hong-Gyoo;Song, Yeong-Sun;Kim, Gi-Hong;Yun, Kong-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.4 s.15
    • /
    • pp.35-42
    • /
    • 2004
  • Accurate classification of water area is a preliminary step to analyze the flooded area and damages caused by flood. This is essential process for monitoring the region where annually repeating flood is a problem. The accurate estimation of flooded area can ultimately be utilized as a primary source of information for the policy decision. In this paper, flooded areas was classified using 1:25,000 land use map and a RADARSAT image of Ok-Chun and Bo-Eun located in Chung-Book province taken in 12th of August, 1998. Then we analyzed the flood area based on GIS. A RADARSAT image was used to classify the flooded areas with slope theme generated from digital elevation model. In processing on a RADARSAT image, the geometric correction was performed by a backwardgeocoding method based on ephemeris data and one control point for near real time flood area analysis.

Performance Comparison for Exercise Motion classification using Deep Learing-based OpenPose (OpenPose기반 딥러닝을 이용한 운동동작분류 성능 비교)

  • Nam Rye Son;Min A Jung
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.59-67
    • /
    • 2023
  • Recently, research on behavior analysis tracking human posture and movement has been actively conducted. In particular, OpenPose, an open-source software developed by CMU in 2017, is a representative method for estimating human appearance and behavior. OpenPose can detect and estimate various body parts of a person, such as height, face, and hands in real-time, making it applicable to various fields such as smart healthcare, exercise training, security systems, and medical fields. In this paper, we propose a method for classifying four exercise movements - Squat, Walk, Wave, and Fall-down - which are most commonly performed by users in the gym, using OpenPose-based deep learning models, DNN and CNN. The training data is collected by capturing the user's movements through recorded videos and real-time camera captures. The collected dataset undergoes preprocessing using OpenPose. The preprocessed dataset is then used to train the proposed DNN and CNN models for exercise movement classification. The performance errors of the proposed models are evaluated using MSE, RMSE, and MAE. The performance evaluation results showed that the proposed DNN model outperformed the proposed CNN model.

Classifying Temporal Topics with Similar Patterns on Twitter

  • Yun, Hong-Won
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.295-300
    • /
    • 2011
  • Twitter is a popular microblogging service that enables the users to send and read short text messages. These messages are becoming source to analyze topic trends and identify relations among temporal topics. In this paper, we propose a method to classify the temporal topics on Twitter as a problem of grouping the similar patterns. To provide a starting point for a classification under the same topics, we identify the content word weighting scheme based on Latent Dirichlet Allocation (LDA). And we formulate how the temporal topics in the time window can be classified like peaky topics, constant topics, and periodic topics. We provide different real case studies which show the validity of the proposed method. Evaluations show that the proposed method is useful as a classifying model in the analysis of the temporal topics.

An Optimized Deep Learning Techniques for Analyzing Mammograms

  • Satish Babu Bandaru;Natarajasivan. D;Rama Mohan Babu. G
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.39-48
    • /
    • 2023
  • Breast cancer screening makes extensive utilization of mammography. Even so, there has been a lot of debate with regards to this application's starting age as well as screening interval. The deep learning technique of transfer learning is employed for transferring the knowledge learnt from the source tasks to the target tasks. For the resolution of real-world problems, deep neural networks have demonstrated superior performance in comparison with the standard machine learning algorithms. The architecture of the deep neural networks has to be defined by taking into account the problem domain knowledge. Normally, this technique will consume a lot of time as well as computational resources. This work evaluated the efficacy of the deep learning neural network like Visual Geometry Group Network (VGG Net) Residual Network (Res Net), as well as inception network for classifying the mammograms. This work proposed optimization of ResNet with Teaching Learning Based Optimization (TLBO) algorithm's in order to predict breast cancers by means of mammogram images. The proposed TLBO-ResNet, an optimized ResNet with faster convergence ability when compared with other evolutionary methods for mammogram classification.

The Optimization of Hybrid BCI Systems based on Blind Source Separation in Single Channel (단일 채널에서 블라인드 음원분리를 통한 하이브리드 BCI시스템 최적화)

  • Yang, Da-Lin;Nguyen, Trung-Hau;Kim, Jong-Jin;Chung, Wan-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.1
    • /
    • pp.7-13
    • /
    • 2018
  • In the current study, we proposed an optimized brain-computer interface (BCI) which employed blind source separation (BBS) approach to remove noises. Thus motor imagery (MI) signal and steady state visual evoked potential (SSVEP) signal were easily to be detected due to enhancement in signal-to-noise ratio (SNR). Moreover, a combination between MI and SSVEP which is typically can increase the number of commands being generated in the current BCI. To reduce the computational time as well as to bring the BCI closer to real-world applications, the current system utilizes a single-channel EEG signal. In addition, a convolutional neural network (CNN) was used as the multi-class classification model. We evaluated the performance in term of accuracy between a non-BBS+BCI and BBS+BCI. Results show that the accuracy of the BBS+BCI is achieved $16.15{\pm}5.12%$ higher than that in the non-BBS+BCI by using BBS than non-used on. Overall, the proposed BCI system demonstrate a feasibility to be applied for multi-dimensional control applications with a comparable accuracy.