• Title/Summary/Keyword: Real-Time Traffic

Search Result 1,586, Processing Time 0.026 seconds

Scheduling of Real-time and Nonreal-time Traffics in IEEE 802.11 Wireless LAN (무선랜에서의 실시간 및 비실시간 트래픽 스케줄링)

  • Lee, Ju-Hee;Lee, Chae Y.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.75-89
    • /
    • 2003
  • Media Access Control (MAC) Protocol in IEEE 802.11 Wireless LAN standard supports two types of services, synchronous and asynchronous. Synchronous real-time traffic is served by Point Coordination Function (PCF) that implements polling access method. Asynchronous nonreal-time traffic is provided by Distributed Coordination Function (DCF) based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol. Since real-time traffic is sensitive to delay, and nonreal-time traffic to error and throughput, proper traffic scheduling algorithm needs to be designed. But it is known that the standard IEEE 802.11 scheme is insufficient to serve real-time traffic. In this paper, real-time traffic scheduling and admission control algorithm is proposed. To satisfy the deadline violation probability of the real time traffic the downlink traffic is scheduled before the uplink by Earliest Due Date (EDD) rule. Admission of real-time connection is controlled to satisfy the minimum throughput of nonreal-time traffic which is estimated by exponential smoothing. Simulation is performed to have proper system capacity that satisfies the Quality of Service (QoS) requirement. Tradeoff between real-time and nonreal-time stations is demonstrated. The admission control and the EDD with downlink-first scheduling are illustrated to be effective for the real-time traffic in the wireless LAN.

A Wireless Downlink Packet Scheduling Algorithm for Multimedia Traffic (멀티미디어 트래픽에 대한 무선 환경에서의 순방향 패킷 스케줄링 알고리즘)

  • 김동회;류병한
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.12
    • /
    • pp.539-546
    • /
    • 2002
  • In this paper, we consider a wireless multimedia environment to service both real-time video traffic and non-real-time WWW-application traffic In our suggested new packet scheduling algorithm, we consider both the accumulation counter and SIR to reduce delay in real-time traffic. In addition, our packet scheduling algorithm gives priority first to real-time video traffic service and then to non-real-time internet Packet service when real-time traffic service is absent. From the simulation results, we find that the AC (Accumulation Counter) scheme has much smaller delay than the conversional M-LWDF scheme for real-time video data users, which has a special quality sensitive to its own delay. We also consider the transmission structure of using both the frame period in the time-axis and the OVSF codes in the code-axis at the same time, which is similar to the structure of HSDPA system.

Real-Time Streaming Traffic Prediction Using Deep Learning Models Based on Recurrent Neural Network (순환 신경망 기반 딥러닝 모델들을 활용한 실시간 스트리밍 트래픽 예측)

  • Jinho, Kim;Donghyeok, An
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • Recently, the demand and traffic volume for various multimedia contents are rapidly increasing through real-time streaming platforms. In this paper, we predict real-time streaming traffic to improve the quality of service (QoS). Statistical models have been used to predict network traffic. However, since real-time streaming traffic changes dynamically, we used recurrent neural network-based deep learning models rather than a statistical model. Therefore, after the collection and preprocessing for real-time streaming data, we exploit vanilla RNN, LSTM, GRU, Bi-LSTM, and Bi-GRU models to predict real-time streaming traffic. In evaluation, the training time and accuracy of each model are measured and compared.

The Effect of Real-time Traffic Information System Relieving Traffic Congestion

  • Kang, Ho Jun;Moon, Tae Nam;Lee, Kang Hyeok;Song, Young Do;Shin, Do Hyoung
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.652-653
    • /
    • 2015
  • This study investigates the effect of real-time traffic information on the traffic flows in Korea. Recently, the development of smartphones has made it easier to use the route guidance service based on real-time traffic information. By the Big Data analysis in the study, it was found that the number of postings on the web community sites increased sharply in 2010 and 2011 when the smartphones spread widely. In the analysis of the traffic speeds by time, the average traffic speeds for morning and evening rush hours on weekdays from 2009 to 2014 of the 142 sections in the 6 national highways in Gyeonggi-do, Korea were used. From the results of the analysis, it was found that the percentage of the number of sections with the improved traffic flows increased greatly in 2012 compared to 2011. The findings of the study indicate the effect of the real-time traffic information on improving traffic flows.

  • PDF

Management and control of fieldbus network traffic by bandwidth allocation scheme (대역폭 할당 기법에 의한 필드버스 네트워크의 트래픽 관리 및 제어)

  • Hong, Seung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.77-88
    • /
    • 1997
  • Fieldbus is the lowest level communication network in factory automation and process control systems. Performance of factory automation and process control systems is directly affected by the data delay induced by network traffic. Data generated from several distributed field devices can be largely divided into three categories: sporadic real-time, periodic real-time and non real-time data. Since these data share one fieldbus network medium, the limited bandwidth of a fieldbus network must be appropriately allocated to the sporadic real-time, periodic real-time and non real-time traffic. This paper introduces a new fieldbus design scheme which allocates the limited bandwidth of fieldbus network to several different kinds of traffic. The design scheme introduced in this study not only satisfies the performance requirements of application systems interconnected into the fieldbus but also fully utilizes the network resources. The design scheme introduced in this study can be applicable to cyclic service protocols operated under single-service discipline. The bandwidth allocation scheme introduced in this study is verified using a discrete-event/continuous-time simulation experiment.

  • PDF

Real-Time Stochastic Optimum Control of Traffic Signals

  • Lee, Hee-Hyol
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.30-44
    • /
    • 2013
  • Traffic congestion has become a serious problem with the recent exponential increase in the number of vehicles. In urban areas, almost all traffic congestion occurs at intersections. One of the ways to solve this problem is road expansion, but it is difficult to realize in urban areas because of the high cost and long construction period. In such cases, traffic signal control is a reasonable method for reducing traffic jams. In an actual situation, the traffic flow changes randomly and its randomness makes the control of traffic signals difficult. A prediction of traffic jams is, therefore, necessary and effective for reducing traffic jams. In addition, an autonomous distributed (stand-alone) point control of each traffic light individually is better than the wide and/or line control of traffic lights from the perspective of real-time control. This paper describes a stochastic optimum control of crossroads and multi-way traffic signals. First, a stochastic model of traffic flows and traffic jams is constructed by using a Bayesian network. Secondly, the probabilistic distributions of the traffic flows are estimated by using a cellular automaton, and then the probabilistic distributions of traffic jams are predicted. Thirdly, optimum traffic signals of crossroads and multi-way intersection are searched by using a modified particle swarm optimization algorithm to realize real-time traffic control. Finally, simulations are carried out to confirm the effectiveness of the real-time stochastic optimum control of traffic signals.

Tramsmission Method of Periodic and Aperiodic Real-Time Data on a Timer-Controlled Network for Distributed Control Systems (분산제어시스템을 위한 타이머 제어형 통신망의 주기 및 실시간 비주기 데이터 전송 방식)

  • Moon, Hong-ju;Park, Hong-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.602-610
    • /
    • 2000
  • In communication networks used in safety-critical systems such as control systems in nuclear power plants there exist three types of data traffic : urgent or asynchronous hard real-time data hard real-time periodic data and soft real-time periodic data. it is necessary to allocate a suitable bandwidth to each data traffic in order to meet their real-time constraints. This paper proposes a method to meet the real-time constraints for the three types of data traffic simultaneously under a timer-controlled token bus protocol or the IEEE 802.4 token bus protocol and verifies the validity of the presented method by an example. This paper derives the proper region of the high priority token hold time and the target token rotation time for each station within which the real-time constraints for the three types of data traffic are met, Since the scheduling of the data traffic may reduce the possibility of the abrupt increase of the network load this paper proposes a brief heuristic method to make a scheduling table to satisfy their real-time constraints.

  • PDF

Real-Time Road Traffic Management Using Floating Car Data

  • Runyoro, Angela-Aida K.;Ko, Jesuk
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.269-276
    • /
    • 2013
  • Information and communication technology (ICT) is a promising solution for mitigating road traffic congestion. ICT allows road users and vehicles to be managed based on real-time road status information. In Tanzania, traffic congestion causes losses of TZS 655 billion per year. The main objective of this study was to develop an optimal approach for integrating real-time road information (RRI) to mitigate traffic congestion. Our research survey focused on three cities that are highly affected by traffic congestion, i.e., Arusha, Mwanza, and Dar es Salaam. The results showed that ICT is not yet utilized fully to solve road traffic congestion. Thus, we established a possible approach for Tanzania based on an analysis of road traffic data provided by organizations responsible for road traffic management and road users. Furthermore, we evaluated the available road information management techniques to test their suitability for use in Tanzania. Using the floating car data technique, fuzzy logic was implemented for real-time traffic level detection and decision making. Based on this solution, we propose a RRI system architecture, which considers the effective utilization of readily available communication technology in Tanzania.

An Efficient Online RTP Packet Classification Method for Traffic Management In the Internet (인터넷상에서 트래픽 관리를 위한 효율적인 RTP 패킷 분류 방법)

  • Roh Byeong-hee
    • Journal of Internet Computing and Services
    • /
    • v.5 no.5
    • /
    • pp.39-48
    • /
    • 2004
  • For transporting real-time multimedia traffic, RTP is considered as one of the most promising protocols operating at application layer. In order to manage and control the real-time multimedia traffic within networks, network managers need to monitor and analyze the traffic delivering through their networks. However, conventional traffic analyzing tools can not exactly classify and analyze the real-time multimedia traffic using RTP on the basis of real-time as well as non-real-time operations. In this paper, we propose an efficient online classification method of RTP packets, which can be used on high-speed network links. The accuracy and efficiency of the proposed methodhave been tested using captured data from a KIX node with 100 Mbps links, which interconnects between domestic and overseas Internet networks and is operated by NCA.

  • PDF

Admission Control Algorithm for Real-Time Packet Scheduling (실시간 패킷 스케줄링을 위한 수락 제어 알고리즘)

  • Ryu Yeonseung;Cho Sehyeong;Won Youjip
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.9
    • /
    • pp.1273-1281
    • /
    • 2004
  • There have been a number of researches on real-time packet scheduling based on EDF algorithm to support end-to-end delay bound guarantees for real-time traffic transmission. However, EDF-based packet scheduler could not guarantee the real-time requirements of real-time traffic if there exist non-real-time traffic. In this paper, we propose a new admission control algorithm and packet scheduling scheme considering non-real-time traffic in the real -time packet scheduler based on EDF policy. Proposed admission control algorithm has pseudo-polynomial time complexity, but we show through simulation that it can be used with little run-time overhead.

  • PDF