• Title/Summary/Keyword: Real-time Mining

Search Result 282, Processing Time 0.031 seconds

Applications of Data Mining Techniques to Operations Planning for Real Time Order Confirmation (실시간 주문 확답을 위한 데이터 마이닝 기반 운용 계획 모델)

  • Han Hyun-Soo;Oh Dong-Ha
    • Korean Management Science Review
    • /
    • v.21 no.3
    • /
    • pp.101-113
    • /
    • 2004
  • In the rapidly propagating Internet based electronic transaction environment. the importance of real time order confirmation has been more emphasized, In this paper, using data mining techniques, we develop intelligent operations decision model to allow real time order confirmation at the time the customer places an order with required delivery terms. Among various operation plannings used for order fulfillment. mill routing is the first interface decision point to link the order receiving at the marketing with the production planning for order fulfillment. Though linear programming based mathematical optimization techniques are mostly used for mill routing problems, some early orders should wait until sufficient orders are gathered for optimization. And that could effect longer order fulfillment lead-time, and prevent instant order confirmation of delivery terms. To cope with this problem, we provide the intelligent decision model to allow instant order based mill routing decisions. Data mining techniques of decision trees and neural networks. which are more popular in marketing and financial applications, are used to develop the model. Through diverse computational trials with the industrial data from the steel company. we have reported that the performance of the proposed approach is effective compared to the present heuristic only mill routing results. Various issues of data mining techniques application to the mill routing problems having linear programming characteristics are also discussed.

Heterogeneous Lifelog Mining Model in Health Big-data Platform (헬스 빅데이터 플랫폼에서 이기종 라이프로그 마이닝 모델)

  • Kang, JI-Soo;Chung, Kyungyong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.75-80
    • /
    • 2018
  • In this paper, we propose heterogeneous lifelog mining model in health big-data platform. It is an ontology-based mining model for collecting user's lifelog in real-time and providing healthcare services. The proposed method distributes heterogeneous lifelog data and processes it in real time in a cloud computing environment. The knowledge base is reconstructed by an upper ontology method suitable for the environment constructed based on the heterogeneous ontology. The restructured knowledge base generates inference rules using Jena 4.0 inference engines, and provides real-time healthcare services by rule-based inference methods. Lifelog mining constructs an analysis of hidden relationships and a predictive model for time-series bio-signal. This enables real-time healthcare services that realize preventive health services to detect changes in the users' bio-signal by exploring negative or positive correlations that are not included in the relationships or inference rules. The performance evaluation shows that the proposed heterogeneous lifelog mining model method is superior to other models with an accuracy of 0.734, a precision of 0.752.

Deep Learning Framework with Convolutional Sequential Semantic Embedding for Mining High-Utility Itemsets and Top-N Recommendations

  • Siva S;Shilpa Chaudhari
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.44-55
    • /
    • 2024
  • High-utility itemset mining (HUIM) is a dominant technology that enables enterprises to make real-time decisions, including supply chain management, customer segmentation, and business analytics. However, classical support value-driven Apriori solutions are confined and unable to meet real-time enterprise demands, especially for large amounts of input data. This study introduces a groundbreaking model for top-N high utility itemset mining in real-time enterprise applications. Unlike traditional Apriori-based solutions, the proposed convolutional sequential embedding metrics-driven cosine-similarity-based multilayer perception learning model leverages global and contextual features, including semantic attributes, for enhanced top-N recommendations over sequential transactions. The MATLAB-based simulations of the model on diverse datasets, demonstrated an impressive precision (0.5632), mean absolute error (MAE) (0.7610), hit rate (HR)@K (0.5720), and normalized discounted cumulative gain (NDCG)@K (0.4268). The average MAE across different datasets and latent dimensions was 0.608. Additionally, the model achieved remarkable cumulative accuracy and precision of 97.94% and 97.04% in performance, respectively, surpassing existing state-of-the-art models. This affirms the robustness and effectiveness of the proposed model in real-time enterprise scenarios.

An Online Response System for Anomaly Traffic by Incremental Mining with Genetic Optimization

  • Su, Ming-Yang;Yeh, Sheng-Cheng
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.375-381
    • /
    • 2010
  • A flooding attack, such as DoS or Worm, can be easily created or even downloaded from the Internet, thus, it is one of the main threats to servers on the Internet. This paper presents an online real-time network response system, which can determine whether a LAN is suffering from a flooding attack within a very short time unit. The detection engine of the system is based on the incremental mining of fuzzy association rules from network packets, in which membership functions of fuzzy variables are optimized by a genetic algorithm. The incremental mining approach makes the system suitable for detecting, and thus, responding to an attack in real-time. This system is evaluated by 47 flooding attacks, only one of which is missed, with no false positives occurring. The proposed online system belongs to anomaly detection, not misuse detection. Moreover, a mechanism for dynamic firewall updating is embedded in the proposed system for the function of eliminating suspicious connections when necessary.

A Mining-based Healthcare Multi-Agent System in Ubiquitous Environments (마이닝 기반 유비쿼터스 헬스케어 멀티에이전트 시스템)

  • Kang, Eun-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2354-2360
    • /
    • 2009
  • Healthcare is a field where ubiquitous computing is most widely used. We propose a mining-based healthcare multi-agent system for ubiquitous computing environments. This proposed scheme select diagnosis patterns using mining in the real-time biosignal data obtained from a patient's body. In addition, we classify them into normal, emergency and be ready for an emergency. This proposed scheme can deal with the enormous quantity of real-time sensing data and performs analysis and comparison between the data of patient's history and the real-time sensory data. We separate Association rule exploration into two data groups: one is the existing enormous quantity of medical history data. The other group is real-time sensory data which is collected from sensors measuring body temperature, blood pressure, pulse. Proposed system has advantage that can handle urgent situation in the far away area from hospital through PDA and mobile device. In addition, by monitoring condition of patient in a real time base, it shortens time and expense and supports medical service efficiently.

Mining Information in Automated Relational Databases for Improving Reliability in Forest Products Manufacturing

  • Young, Timothy M.;Guess, Frank M.
    • International Journal of Reliability and Applications
    • /
    • v.3 no.4
    • /
    • pp.155-164
    • /
    • 2002
  • This paper focuses on how modem data mining can be integrated with real-time relational databases and commercial data warehouses to improve reliability in real-time. An important Issue for many manufacturers is the development of relational databases that link key product attributes with real-time process parameters. Helpful data for key product attributes in manufacturing may be derived from destructive reliability testing. Destructive samples are taken at periodic time intervals during manufacturing, which might create a long time-gap between key product attributes and real-time process data. A case study is briefly summarized for the medium density fiberboard (MDF) industry. MDF is a wood composite that is used extensively by the home building and furniture manufacturing industries around the world. The cost of unacceptable MDF was as large as 5% to 10% of total manufacturing costs. Prevention can result In millions of US dollars saved by using better Information systems.

  • PDF

Machine Learning Based Prediction of Bitcoin Mining Difficulty (기계학습 기반 비트코인 채굴 난이도 예측 연구)

  • Lee, Joon-won;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.225-234
    • /
    • 2019
  • Bitcoin is a cryptocurrency with characteristics such as de-centralization and distributed ledger, and these features are maintained through a mining system called "proof of work". In the mining system, mining difficulty is adjusted to keep the block generation time constant. However, Bitcoin's current method to update mining difficulty does not reflect the future hash power, so the block generation time can not be kept constant and the error occurs between designed time and real time. This increases the inconsistency between block generation and real world and causes problems such as not meeting deadlines of transaction and exposing the vulnerability to coin-hopping attack. Previous studies to keep the block generation time constant still have the error. In this paper, we propose a machine-learning based method to reduce the error. By training with the previous hash power, we predict the future hash power and adjust the mining difficulty. Our experimental result shows that the error rate can be reduced by about 36% compared with the current method.

PPFP(Push and Pop Frequent Pattern Mining): A Novel Frequent Pattern Mining Method for Bigdata Frequent Pattern Mining (PPFP(Push and Pop Frequent Pattern Mining): 빅데이터 패턴 분석을 위한 새로운 빈발 패턴 마이닝 방법)

  • Lee, Jung-Hun;Min, Youn-A
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.12
    • /
    • pp.623-634
    • /
    • 2016
  • Most of existing frequent pattern mining methods address time efficiency and greatly rely on the primary memory. However, in the era of big data, the size of real-world databases to mined is exponentially increasing, and hence the primary memory is not sufficient enough to mine for frequent patterns from large real-world data sets. To solve this problem, there are some researches for frequent pattern mining method based on disk, but the processing time compared to the memory based methods took very time consuming. There are some researches to improve scalability of frequent pattern mining, but their processes are very time consuming compare to the memory based methods. In this paper, we present PPFP as a novel disk-based approach for mining frequent itemset from big data; and hence we reduced the main memory size bottleneck. PPFP algorithm is based on FP-growth method which is one of the most popular and efficient frequent pattern mining approaches. The mining with PPFP consists of two setps. (1) Constructing an IFP-tree: After construct FP-tree, we assign index number for each node in FP-tree with novel index numbering method, and then insert the indexed FP-tree (IFP-tree) into disk as IFP-table. (2) Mining frequent patterns with PPFP: Mine frequent patterns by expending patterns using stack based PUSH-POP method (PPFP method). Through this new approach, by using a very small amount of memory for recursive and time consuming operation in mining process, we improved the scalability and time efficiency of the frequent pattern mining. And the reported test results demonstrate them.

An Empirical Comparison Study on Attack Detection Mechanisms Using Data Mining (데이터 마이닝을 이용한 공격 탐지 메커니즘의 실험적 비교 연구)

  • Kim, Mi-Hui;Oh, Ha-Young;Chae, Ki-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.208-218
    • /
    • 2006
  • In this paper, we introduce the creation methods of attack detection model using data mining technologies that can classify the latest attack types, and can detect the modification of existing attacks as well as the novel attacks. Also, we evaluate comparatively these attack detection models in the view of detection accuracy and detection time. As the important factors for creating detection models, there are data, attribute, and detection algorithm. Thus, we used NetFlow data gathered at the real network, and KDD Cup 1999 data for the experiment in large quantities. And for attribute selection, we used a heuristic method and a theoretical method using decision tree algorithm. We evaluate comparatively detection models using a single supervised/unsupervised data mining approach and a combined supervised data mining approach. As a result, although a combined supervised data mining approach required more modeling time, it had better detection rate. All models using data mining techniques could detect the attacks within 1 second, thus these approaches could prove the real-time detection. Also, our experimental results for anomaly detection showed that our approaches provided the detection possibility for novel attack, and especially SOM model provided the additional information about existing attack that is similar to novel attack.

Real-Time Ransomware Infection Detection System Based on Social Big Data Mining (소셜 빅데이터 마이닝 기반 실시간 랜섬웨어 전파 감지 시스템)

  • Kim, Mihui;Yun, Junhyeok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.10
    • /
    • pp.251-258
    • /
    • 2018
  • Ransomware, a malicious software that requires a ransom by encrypting a file, is becoming more threatening with its rapid propagation and intelligence. Rapid detection and risk analysis are required, but real-time analysis and reporting are lacking. In this paper, we propose a ransomware infection detection system using social big data mining technology to enable real-time analysis. The system analyzes the twitter stream in real time and crawls tweets with keywords related to ransomware. It also extracts keywords related to ransomware by crawling the news server through the news feed parser and extracts news or statistical data on the servers of the security company or search engine. The collected data is analyzed by data mining algorithms. By comparing the number of related tweets, google trends (statistical information), and articles related wannacry and locky ransomware infection spreading in 2017, we show that our system has the possibility of ransomware infection detection using tweets. Moreover, the performance of proposed system is shown through entropy and chi-square analysis.