• Title/Summary/Keyword: Recombinant Saccharomyces cerevisiae

Search Result 184, Processing Time 0.02 seconds

Biochemical Properties of Recombinant Cyclodextrin Glucanotransferase Expressed in Saccharomyces cerevisiae (Saccharomyces cerevisiae에 발현된 재조합 cyclodextrin glucanotransferase의 생화학적 특성)

  • 박현이;남수완;김병우
    • Journal of Life Science
    • /
    • v.11 no.3
    • /
    • pp.230-234
    • /
    • 2001
  • The cyclodextrin glucanotransferase(CGTase) gene of Bacillus macerans was expressed in Saccharomyces cerevisiae and the recombinant CGTase was partially purified from the yeast culture supernatant. The optimal pH and temperature of the CGTase were found to be 6.0 and 5$0^{\circ}C$, respectively. The pH and temperature stabilities of the recombinant enzyme were significantly enhanced and the half life at 55$^{\circ}C$ was about 60 hr. When the recombinant CGTase was reacted with 5% soluble starch, the conversion yield of total cyclodextrin (CD) from starch was estimated to be 41% at 48 hr, whereas the wild type enzyme showed the yield of 12%. This improvement of conversion yield and thermal stability of CGTase may be useful for the development of low-cost CD production process.

  • PDF

Monascus Red Pigment Overproduction by Coculture with Recombinant Saccharomyces cerevisiae Secreting Glucoamylase

  • Lim, Ho-Soo;Yoo, Seung-Ku;Shin, Chul-Soo;Hyun, Young-Min
    • Journal of Microbiology
    • /
    • v.38 no.1
    • /
    • pp.48-51
    • /
    • 2000
  • In liquid cultures using sucrose media, the coculture of Monascus with recombinant Saccharomyces cerevisiae expressing the glucoamylase gene from Aspergillus niger enhanced red pigment production by approx. 19%, compared with the coculture of wild type S. cerevisiae. Coculture with recombinant S. cerevisiae was more effective than with wild type S. cerevisiae for Monascus red pigment production. Cocultures of Monascus with commercial amylases of Aspergillus also induced high production of pigment and morphological changes in a solid culture using sucrose media.

  • PDF

Expression of recombinant plasmids harboring glucoamylase gene STA in saccharomyces cerevisiae (Glucoamylase 유전자 STA를 포함한 재조합 플라스미드들의 saccharomyces cerevisiae에서의 발현)

  • 박장서;박용준;이영호;강현삼;백운화
    • Korean Journal of Microbiology
    • /
    • v.28 no.3
    • /
    • pp.181-187
    • /
    • 1990
  • STA gene coding glucoamylase was introduced into haploid Saccharomyces cerevisiae SHY3 and polyploid Saccharomyces cerevisiae 54. We constructed the recombinant plasmid by substituting the promoter region of alcohol dehydrogenase isoenzyme I gene for that of STA gene to increase the expression of STA gene and found that the activity of glucoamylase was increased in transformants. The plasmid stability was improved remarkably when we got the STA gene into the plasmid which had centromere. The activity of glucoamylase and transformation frequency of it, however, was decreased because of low copy number. Industrial polyploid strain was transformed with the recombinant plasmid having the $2\mu$ origin of replication and STA gene. It produced more alcohol than host when fermented in liquefied starch media. The industrial strain, however, was not transformed with the autonomously replicating plasmid containing centromere.

  • PDF

Effects of Xylose Reductase Activity on Xylitol Production in Two-Substrate Fermentation of Recombinant Saccharomyces cerevisiae

  • Lee, Woo-Jong;Kim, Myoung-Dong;Yoo, Myung-Sang;Ryu, Yeon-Woo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.725-730
    • /
    • 2003
  • Three recombinant Saccharomyces cerevisiae strains showing different levels of xylose reductase activity were constructed to investigate the effects of xylose reductase activity and glucose feed rate on xylitol production. Conversion of xylose to xylitol is catalyzed by xylose reductase of Pichia stipitis with cofactor NAD(P)H. A two-substrate fermentation strategy has been employed where glucose is used as an energy source for NADPH regeneration and xylose as substrate for xylitol production. All recombinant S. cerevisiae strains Yielded similar specific xylitol productivity, indicating that xylitol production in the recombinant S. cerevisiae was more profoundly affected by the glucose supply and concomitant It generation of cofactor than the xylose reductase activity itself. It was confirmed in a continuous culture that the elevation of the glucose feeding level in the xylose-conversion period enhanced the xylitol productivity in the recombinant S. cerevisiae.

Expression and Localization of Inulinase in Recombinant Saccharomyces cerevisiae (재조합 Saccharomyces cerevisiae에서 Inulinase의 발현과 국재성)

  • Nam, Soo-Wan;Woo, Moon-Hee;Kim, Byung-Moon;Chung, Bong-Hyun;Park, Young-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.2
    • /
    • pp.152-157
    • /
    • 1994
  • Inulinase of Kluyveromyces marxianus origin was produced by recombinant yeast Saccharomyces cerevisiae under the control of GAL1 promoter, to examine the expression and localization of inulinase in a repressed(galactose-free) or derepressed(galactose-containinga) medium. The inulinase gene(INU1A) was constitutively expressed at 6.7 units/ml in a repressed medium. When the cell started to utilize galactose in a derepressed medium, the INU1A gene began to be expressed, and the final expression level reached about 45 units/ml. According to be the nondenaturingPAGE analysis, inulinase produced by S. cerevisiae was found to be less glycosylated than the bakers yeast invertase. In addition, its glycosylation pattern was less heterogeneous than the K. marxianus inulinase. The supplementation of inulin or raffinose into the derepressed medium increased the cell growth rate, while the expression of INU1A was repressed. Regardless of the carbon sources examined, most of inulinase activity (more than 98%) was found in the extracellular medium, indicating excellent secretion efficiency.

  • PDF

Development of Cellobiose-utilizing Recombinant Yeast for Ethanol Production from Cellulose Hydrolyzate

  • Pack, Seung-Pil;Cho, Kwang-Myung;Kang, Hyen-Sam;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.441-448
    • /
    • 1998
  • A cellobiose-utilizing recombinant yeast having $\beta$-glucosidase activity was developed for ethanol production from a mixture of glucose and cellobiose. Using $\delta$-sequences of Tyl transposon of yeast as target sites for homologous recombination, a heterologous gene of $\beta$-glucosidase was integrated into the chromosome of Saccharomyces cerevisiae. The $\delta$-integrated recombinant yeast, Saccharomyces cerevisiae L2612 (Pb-BGL), showed perfect mitotic stability even in nonselective media and showed ca. 1.5 fold higher $\beta$-glucosidase activity than the recombinant yeast harboring the $2\mu$-based plasmid vector system. A mathematical model was developed to describe the $\beta$-glucosidase formation and ethanol production from the Saccharomyces cerevisiae L2612 ($p\delta-BGL$). The model newly described that the heterologous $\beta$-glucosidase production mediated by ADH1 promoter is regulated by glucose and repressed by ethanol.

  • PDF

Production of Recombinant Hirudin in Galactokinase-deficient Saccharomyces cerevisiae by Fed-batch Fermentation with Continuous Glucose Feeding

  • Srinivas Ramisetti;Kang, Hyun-Ah;Rhee, Sang-Ki;Kim, Chul-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.3
    • /
    • pp.183-186
    • /
    • 2003
  • The artificial gene coding for anticoagulant hirudin was placed under the control of the GAL 10 promoter and expressed in the galactokinase-deficient strain (Δgal1) of Saccharomyces cerevisiae, which uses galactose only as a gratuitous inducer in order to avoid its consumption. For efficient production of recombinant hirudin, a carbon source other than galactose should be provided in the medium to support growth of the Δgal1 strain. Here we demonstrate the successful use of glucose in the fed-batch fermentation of the Δgal1 strain to achieve efficient production of recombinant hirudin, with a yield of up to 400 mg hirudin/L.

Estimation of Theoretical Yield for Ethanol Production from D-Xylose by Recombinant Saccharomyces cerevisiae Using Metabolic Pathway Synthesis Algorithm

  • Lee, Tae-Hee;Kim, Min-Young;Ryu, Yeon-Woo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.384-388
    • /
    • 2001
  • The metabolic pathway synthesis algorithm was applied to estimate the maximum ethanol yield from xylose in a model recombinant Saccharomyces cerevisiae strain containing the genes involved in xylose metabolism. The stoichiometrically independent pathways were identified by constructing a biochemical reaction network for conversion of xylose to ethanol in the recombinant S. cerevisiae. Two independent pathways were obtained in xylose-assimilating recombinant S. cerevisiae as opposed to six independent pathways for conversion of glucose to ethanol. The maximum ethanol yield from xylose was estimated to be 0.46 g/g, which was lower than the known value of 0.51 g/g for glucose-fermenting and wild-type xylose-fermenting yeasts.

  • PDF

Conversion of Xylose to Ethanol by Recombinant Saccharomyces cerevisiae Containing Genes for Xylose Reductase and Xylose Reductase and xylitol Dehydrogenase from Pichia stipitis

  • Jin, Young-Su;Lee, Tae-Hee;Choi, Yang-Do;Ryu, Yeon-Woo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.564-567
    • /
    • 2000
  • A recombinant Saccharomyces cerevisiae, transformed with the genes encoding xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) orginated from Pichia stipitis CBS 5776, was developed to directly convert xylose to ethanol. A fed-batch fermentation with the recombinant yeast produced 8.7 g ethanol/l with a yield of 0.13 g ethanol/g xylose consumed.

  • PDF

Effect of Amino Acids and Dissolved Oxygen on Expression of Invertase in Recombinant Saccharomyces cerevisiae (재조합 Saccharomyces cerevisiae의 Invertase 발현에 미치는 아미노산과 용존산소의 영향)

  • 신해헌;조정섭;변유량;박혜영
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.3
    • /
    • pp.348-354
    • /
    • 1992
  • In order to improve the productivity of invertase by recombinant Saccharomyces cerevisiae containing SUC2 gene, the effect of amino acids and dissolved oxygen concentration on the gene expression was investigated. Optimal concentrations of leucine and histidine for cell growth and cloned gene expression were 0.03 gig and 0.04 gig, respectively, expressed as the ratio of amino acid/glucose. The lack or excess of leucine and histidine has inhibitory effect on cell growth and invertase expression. In batch culture, the less aeration was, the higher invertase activity was. In continuous culture at a dilution rate of 0.09 h 1 with controlled dissolved oxygen tension, invertase activity increased dramatically at DOT levels below 5% air saturation, and a maximum activity of 215.54 KUlg cell was obtained under unaerated condition.

  • PDF