• Title/Summary/Keyword: Reconnaissance surveying

Search Result 10, Processing Time 0.04 seconds

The Study on Reconnaissance Surveying Using Terrestrial Laser Scanner (지상 라이다를 활용한 현황측량 연구)

  • Lee, In-Su;Kang, Sang-Gu
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.79-86
    • /
    • 2006
  • Nowadays 3D terrestrial laser scanners record high precision three-dimensional coordinates of numerous points on an object surface in a short period of time. So terrestrial laser scanner is applied to a wide variety of fields including geodesy, and civil engineering, archaeology and architecture, and emergency service and defence, etc. This study deals with the potential application of terrestrial laser scanner in the reconnaissance surveying. The results shows that terrestrial laser scanner is possible to extract the linear features and the positioning accuracy of objects measured by total station surveying is comparative to that by terrestrial laser scanner. Thereafter, it is expected that the potential applications of terrestrial laser scanning will be more increased by combining terrestrial laser scanners with airborne LiDAR (Light Detection And Ranging) and photogrammetric technology.

  • PDF

Comparison of the Accuracy to the Surveying Data by Terrestrial LiDAR and Total Station (지상LiDAR와 토탈스테이션에 의한 측량성과의 정확도 비교분석)

  • Yang, In-Tae;Shin, Moon-Seung;Lee, Sung-Koo;Shin, Myung-Seup
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.9-15
    • /
    • 2011
  • Nowadays, the Surveying field is growing rapidly in terms of technology such as TS(Total Station) surveying, photographic surveying, digital aerial photogrammetry, utilization of GIS(Geographic Information System) using high-resolution satellite imagery, obtaining 3D Coordinate using GPS. But control point surveying, benchmark measuring, and field Surveying are still performed by the engineers in the field. So, 3D yerrestrial laser scanner comes to the fore recently. 3D terrestrial laser scanner can get 3D coordinate about a number of sites of the subject in a short period with high accuracy. This paper compared the accuracy of data from the performance using 3D terrestrial laser scanner with that of TS. It also obtained the geopositioning accuracy result equivalent to the surveying result of TS. With further researches in the future, it is expected to be used not only in LiDAR itself but also in various areas like reconnaissance Surveying and construction by combining with TS or other Surveying equipments.

  • PDF

Utilization Evaluation of Digital Surface Model by UAV for Reconnaissance Survey of Construction Project (건설공사 현황측량을 위한 UAV DSM의 활용성 평가)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.155-160
    • /
    • 2018
  • The unmanned aerial vehicle (UAV) is used in various fields, such as land surveying, facility management, and disaster monitoring and restoration because it has low operational costs, fast data acquisition, and can generate a digital surface model (DSM). Recently, the UAV has been applied to process management in construction projects. Construction projects are widely distributed not only in urban areas but also in mountainous areas and rural areas where people are rarely in traffic or in vehicles. Projects range from a few hundred meters to several kilometers long. In order to perform a reconnaissance survey, a surveying method using a global positioning system (GPS) or a total station has mainly been used. However, these methods have a disadvantage in that a lot of time is required for data acquisition. This study's purpose is to evaluate the usability of a UAV DSM for surveying a construction area. Data was acquired using the UAV and a three-dimensional (3D) laser scanner, and the DSM of the construction site was created through data processing. The UAV DSM showed accuracy to within 30 cm based on the 3D laser scanner data, and a process comparison between the two work methods was able to present the usability of the UAV DSM in the field of construction surveying. Future utilization of the UAV DSM is expected to greatly improve the efficiency of work in construction projects.

Update of Topographic Map using QuickBird Orthoimage (Quick Bird 정사영상을 이용한 지형도 갱신)

  • 이창경;우현권;정인준
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.295-301
    • /
    • 2004
  • Satellite captures images periodically and economically over the area wider than aerial photographs, and reconnaissance to unapproachable area. For these advantages, mapping using high resolution satellite image has high potentials of marketability and development. Therefore, utilization of satellite image in mapping and GIS is expected to be growing and research on describable feature, positional accuracy and, possible mapping scale is urgently needed. This research presented that Quick Bird orthoimage could be used to update digital map on a scale of 1:5,000. Quick Bird image was corrected geometrically based on ground control points. DEM was generated using height data of digital topographic map. The orthoimge was produced by digital differential rectification based on DEM which was generated using height data of digital topographic map(scale 1;5,000 and 1;1,000). When the digital topographic map was overlaid with the orthoimage, it was very easy to find changed region or new features builded after the map compiled.

  • PDF

Test-Bed Establishment Scheme for Terrestrial Laser Scanner' Performance Evaluation (지상레이저스캐너 성능평가를 위한 테스트베드 구축 방안)

  • Lee, In-Su;Tcha, Dek-Ki;Kim, Su-Jeong;Kim, Jin
    • Spatial Information Research
    • /
    • v.17 no.1
    • /
    • pp.39-49
    • /
    • 2009
  • 3D terrestrial laser scanners record high precision three-dimensional coordinates of numerous points on an object surface in a short period of time, and is applied to a wide variety of fields including geodesy, and civil engineering, archaeology and architecture, and emergency service and defence, etc. However, most of terrestrial laser scanner utilized in homeland, were imported from foreign country, and also was not authorized formally as the surveying instrument. Therefore, standard test facility to calibrate and perform its evaluation in order to utilize it in a variety of fields is required. This study deals with the test facility of foreign countries for terrestrial laser scanner and suggest the establishment scheme of domestic test facility.

  • PDF

Estimation Model on Stress of Structures using TLS and FEM (TLS와 FEM을 이용한 구조물의 음력평가 모델 개발)

  • Kang, Deok-Shin;Lee, Hong-Min;Park, Hyo-Seon;Lee, Im-Pyeong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.49-52
    • /
    • 2007
  • Terrestrial Laser Scanning(TLS) was developed at the mid-to-late 1990s. This technique enables to perform reconnaissance surveying of regions or structures hard to access. Besides, TLS has been extended its application gradually such as preservation of historical remains, underground surveys, slopes, glaciers monitoring and so on. However, though the technique has a lot of advantages, an application for structural health and safety monitoring is a beginning stage and it need much research. Therefore in this study, as a groundwork, the estimation model on stress of structures using TLS and Finite Element Method(FEM) applied by the Digital Elevation Model(DEM) technique of geoinformatics is proposed. For the verification of this model, experiments were performed with a continuous steel beam subjected to point loads and outputs were compared with those of electrical strain sensors.

  • PDF

Coastline Change Detection Using CORONA Imagery (CORONA 위성영상을 이용한 동해안 해안선 변화탐지)

  • Kim Gi Hong;Choi Seung Pil;Yook Woon Soo;Song Yeong Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.419-426
    • /
    • 2005
  • Recently the interest in coast area has been increased in the view of management and usage of national territory. Rapid coastal development has caused directly or indirectly coastline changes which may make environmental problems or threaten the nearby residents' livelihood. CORONA was one of the US satellite reconnaissance programs, and it's imagery provides informations about past coastline with high resolution. In this study, we applied rigorous geo-referencing algorithm to CORONA imagery in order to generate the mosaic image of the East coast area of 1969 with 20m accuracy. This old era CORONA mosaic image was compared with SPOT image of 2005, and the coastline changes were analyzed. We were able to ascertain considerable erosion and accumulation in some parts of study area. erosion area which is calculated from imagery is $0.32\;km^2$ from Kosung to Kangnung. Results of coastline change detection can provide useful information for related studies.

Geometric Modeling and Data Simulation of an Airborne LIDAR System (항공라이다시스템의 기하모델링 및 데이터 시뮬레이션)

  • Kim, Seong-Joon;Min, Seong-Hong;Lee, Im-Pyeong;Choi, Kyung-Ah
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.311-320
    • /
    • 2008
  • A LIDAR can rapidly generate 3D points by densely sampling the surfaces of targets using laser pulses, which has been efficiently utilized to reconstruct 3D models of the targets automatically. Due to this advantage, LIDARs are increasingly applied to the fields of Defense and Security, for examples, being employed to intelligently guided missiles and manned/unmanned reconnaissance planes. For the prior verification of the LIDAR applicability, this study aims at generating simulated LIDAR data. Here, we derived the sensor equation by modelling the geometric relationships between the LIDAR sub-modules, such as GPS, IMU, LS and the systematic errors associated with them. Based on this equation, we developed a program to generate simulated data with the system parameters, the systematic errors, the flight trajectories and attitudes, and the reference terrain model given. This program had been applied to generating simulated LIDAR data for urban areas. By analyzing these simulated data, we verified the accuracy and usefulness of the simulation. The simulator developed in this study will provide economically various test data required for the development of application algorithms and contribute to the optimal establishment of the flight and system parameters.

A Study on Surveying Techniques of Rural Amenity Resources Using Internet High-resolution Image Services - mainly on Google Earth - (인터넷 고해상도 영상서비스를 이용한 농촌어메니티 자원조사 기술에 관한 연구 - Google Earth를 중심으로 -)

  • Jang, Min-Won;Chung, Hoi-Hoon;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of Korean Society of Rural Planning
    • /
    • v.15 no.4
    • /
    • pp.199-211
    • /
    • 2009
  • The aim of this paper is to investigate the applicability of high spatial resolution remote sensing images for conducting the rural amenity resources survey. There are a large number of rural amenity resources and field reconnaissance without a sufficient preliminary survey involves a big amount of cost and time even if the data quality cannot always be satisfied with the advanced study. Therefore, a new approach should be considered like the state-of-the-art remote sensing technology to support field survey of rural amenity resources as well as to identify the spatial attributes including the geographical location, pathway, area, and shape. Generally high-resolution satellite or aerial photo images are too expensive to cover a large area and not free of meteorological conditions, but recently rapidly-advanced internet-based image services, such as Google Earth, Microsoft Bing maps, Bluebirds, Daum maps, and so on, are expected to overcome the handicaps. The review of the different services shows that Google Earth would be the most feasible alternative for the survey of rural amenity resources in that it provides powerful tools to build spatial features and the attributes and the data format is completely compatible with other GIS(Geographic information system) software. Hence, this study tried to apply the Google Earth service to interpret the amenity resources and proposed the reformed work process conjugating the internet-based high-resolution images like satellite and aerial photo data.

Orhtophoto Accuracy Assessment of Ultra-light Fixed Wing UAV Photogrammetry Techniques (초경량 고정익무인항공기 사진측량기법의 정사영상 정확도 평가)

  • Lee, In Su;Lee, Jae One;Kim, Su Jeong;Hong, Soon Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2593-2600
    • /
    • 2013
  • The main purpose of this study is to carry out the performance evaluation of Ultra-light Fixed Wing UAV(Unmanned Aerial Vehicle) photogrammetry which is being, currently, applied for various fields such as cultural assets, accident survey, military reconnaissance work, and disaster management at home and abroad. Firstly, RMSE estimation of Aerial Triangulation (AT) are within approximately 0.10 cm in position (X, Y). And through the comparison of parcel's boundary points coordinates by terrestrial surveying and by UAV photogrammetry, the analysis shows that RMSE are shifted approximately 0.174~0.205 m in X-direction, 0.294~0.298 m in Y-direction respectively. Lastly, parcel's area by orthophoto of UAV photogrammetry and by that of cadastre register has been shown the difference by 0.118 m2. The results presented in this study is just one case study of orthophoto accuracy assessment of Ultra-light fixed wing UAV photogrammetry, hereafter various researches such as AT, direct-georeferencing, flight planning, practical applications, etc. should be necessary continuously.