• Title/Summary/Keyword: Recursive least square method

Search Result 167, Processing Time 0.04 seconds

A Recursive Data Least Square Algorithm and Its Channel Equalization Application

  • Lim, Jun-Seok;Kim, Jae-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.2E
    • /
    • pp.43-48
    • /
    • 2006
  • Abstract-Using the recursive generalized eigendecomposition method, we develop a recursive form solution to the data least squares (DLS) problem, in which the error is assumed to lie in the data matrix only. Simulations demonstrate that DLS outperforms ordinary least square for certain types of deconvolution problems.

Estimation of Voltage Instability Index Using RLS(Recursive Least Square) (RLS(Recursive Least Square)를 이용한 전압안정도 지수 평가)

  • Jeon, Woong-Jae;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.279-281
    • /
    • 2006
  • A Voltage Instability Predictor(VIP) estimates the proximity of a power system to voltage collapse in real time. Voltage Instability Index(Z-index) from VIP algorithm is estimated using LS(Least Square) method. But this method has oscillations and noise of result due to the system's changing conditions. To suppress oscillations, a larger data window needs to be used. In this paper. I propose the new other method which improves that weakness. It uses RLS(Recursive Least Square) to estimate voltage instability index without a large moving data window so this method is suitable for on-line monitor and control in real time. In order to verify effectiveness of the algorithm using RLS method, the method is tested on HydroQuebec system in real time digital simulator(HYPERSIM).

  • PDF

Correction Method of Tracking Error for Astronomical Telescope Using Recursive Least Square Method (재귀 최소자승법을 이용한 천체 망원경의 추적 오차 보정법)

  • Kwak, Dong-Hoon;Kim, Tae-Han;Lee, Young-Sam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.224-229
    • /
    • 2012
  • In this paper, we propose a correction method for astronomical telescope using recursive least square method. There are two ways to move a telescope : equatorial operation and altazimuth operation. We must align polar axis of a equatorial telescope with the north celestial pole and adjust the horizontal axis of a altazimuth telescope exactly to match the celestial coordinate system with the telescope coordinate system. This process needs time and expertise. We can skip existing process and correct a tracking error easily by deriving the relationship of the celestial coordinate system and the telescope coordinate system using the proposed correction method. We obtain the coordinate of a celestial body in the celestial coordinate system and the telescope coordinate system and derive a transformation matrix through the obtained coordinate. We use recursive least square method to estimate the unknown parameters of a transformation matrix. Finally, we implement a telescope control system using a microprocessor and verify the performance of the correction method. Through an experiment, we show the validity of the proposed correction method.

Estimation of Aerodynamic Coefficients for a Skid-to-Turn Missile using Neural Network and Recursive Least Square (신경회로망과 순환최소자승법을 이용한 Skid-to-Turn 미사일의 공력 파라미터 추정)

  • Kim, Yun-Hwan;Park, Kyun-Bub;Song, Yong-Kyu;Hwang, Ick-Ho;Choi, Dong-Kyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.4
    • /
    • pp.7-13
    • /
    • 2012
  • This paper is to estimate aerodynamic coefficients needed to determine the missiles' controller design and stability from simulation data of Skid-to-Turn missile. Method of determining aerodynamic coefficients is to apply Neural Network and Recursive Least Square and results were compared and researched. Also analysing actual flight test data was considered and sensor noise was added. Estimate parameter of data with sensor noise added and estimated performance and reliability for both methods that did not need initial values. Both Neural Network and Recursive Least Square methods showed excellent estimate results without adding the noise and with noise added Neural Network method showed better estimate results.

Experimental Study on a Monte Carlo-based Recursive Least Square Method for System Identification (몬테카를로 기반 재귀최소자승법에 의한 시스템 인식 실험 연구)

  • Lee, Sang-Deok;Jung, Seul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.248-254
    • /
    • 2018
  • In this paper, a Monte Carlo-based Recursive Least Square(MC-RLS) method is presented to directly identify the inverse model of the dynamical system. Although a RLS method has been used for the identification based on the deterministic data in the closed loop controlled form, it would be better for RLS to identify the model with random data. In addition, the inverse model obtained by inverting the identified forward model may not work properly. Therefore, MC-RLS can be used for the inverse model identification without proceeding a numerical inversion of an identified forward model. The performance of the proposed method is verified through experimental studies on a control moment gyroscope.

A Study on the Modeling and Diagnostics in Drilling Operation (드릴링 작업의 모델링과 진단법에 관한 연구)

  • Yoon, M.C.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.73-80
    • /
    • 1998
  • The identification of drilling joint dynamics which consists of drilling and structural dynamics and the on-line time series detection of malfunction process is substantial not only for the investigation of the static and dynamic characteristics but also for the analytic realization of diagnostic and control systems in drilling. Therefore, We have discussed on the comparative assessment of two recursive time series modeling algorithms that can represent the drilling operation and detect the abnormal geometric behaviors in precision roundshape machining such as turning, drilling and boring in precision diemaking. For this purpose, simulation and experimental work were performed to show the malfunctional behaviors for drilling operation. For this purpose, a new two recursive approach (Recursive Extended Instrument Variable Method : REIVM, Recursive Least Square Method : RLSM) may be adopted for the on-line system identification and monitoring of a malfunction behavior of drilling process, such as chipping, wear, chatter and hole lobe waviness.

  • PDF

Design of optimal P.I.D controller for unknwon long time delayed system (시간지연이 큰 미지의 시스템에 대한 최적 P.I.D 제어기 설계)

  • 박익수;문병희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.164-167
    • /
    • 1996
  • This paper presents an off-line P.I.D parameter estimation method during normal operation in power plant. The process parameters are estimated using the recursive least square method. The controller parameters are estimated on the basis of desired characteristics of the dynamic model of the closed-loop control.

  • PDF

Parallel Implementation of the Recursive Least Square for Hyperspectral Image Compression on GPUs

  • Li, Changguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3543-3557
    • /
    • 2017
  • Compression is a very important technique for remotely sensed hyperspectral images. The lossless compression based on the recursive least square (RLS), which eliminates hyperspectral images' redundancy using both spatial and spectral correlations, is an extremely powerful tool for this purpose, but the relatively high computational complexity limits its application to time-critical scenarios. In order to improve the computational efficiency of the algorithm, we optimize its serial version and develop a new parallel implementation on graphics processing units (GPUs). Namely, an optimized recursive least square based on optimal number of prediction bands is introduced firstly. Then we use this approach as a case study to illustrate the advantages and potential challenges of applying GPU parallel optimization principles to the considered problem. The proposed parallel method properly exploits the low-level architecture of GPUs and has been carried out using the compute unified device architecture (CUDA). The GPU parallel implementation is compared with the serial implementation on CPU. Experimental results indicate remarkable acceleration factors and real-time performance, while retaining exactly the same bit rate with regard to the serial version of the compressor.

Design of self-tuning controller utilizing neural network (신경회로망기법을 이용한 자기동조제어기 설계)

  • 구영모;이윤섭;김대종;임은빈;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.399-401
    • /
    • 1989
  • Utilizing an interconnected set of neuron-like elements, the present study is to provide a method of parameter estimation for a second order linear time invariant system of self-tuning controller. The result from the proposed method is evaluated by comparing with those obtained by the recursive least square (RLS) identification algorithm and extended recursive least square (ERLS) algorithm, and it shows that, although the smoothness of system performance is still to be improved, the effectiveness of shorter computing time is demonstrated which may be of considerable value to real time computing.

  • PDF

On-line Compensation Method for Magnetic Position Sensor using Recursive Least Square Method (재귀형 최소 자승법을 이용한 자기 위치 센서의 실시간 보상 방법)

  • Kim, Ji-Won;Moon, Seok-Hwan;Lee, Ji-Young;Chang, Jung-Hwan;Kim, Jang-Mok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2246-2253
    • /
    • 2011
  • This paper presents the error correction method of magnetic position sensor using recursive least square method (RLSM) with forgetting factor. Magnetic position sensor is proposed for linear position detection of the linear motor which has tooth shape stator, consists of permanent magnet, iron core and linear hall sensor, and generates sine and cosine waveforms according to the movement of the mover of the linear motor. From the output of magnetic position sensor, the position of the linear motor can be detected using arc-tan function. But the variation of the air gap between magnetic position sensor and the stator and the error in manufacturing process can cause the variation in offset, phase and amplitude of the generated waveforms when the linear motor moves. These variations in sine and cosine waveforms are changed according to the current linear motor position, and it is very difficult to compensate the errors using constant value. In this paper, the generated sine and cosine waveforms from the magnetic position sensor are compensated on-line using the RLSM with forgetting factor. And the speed observer is introduced to reduce the effect of uncompensated harmonic component. The approaches are verified by some simulations and experiments.