• Title/Summary/Keyword: Red OLED

Search Result 120, Processing Time 0.033 seconds

Emission Characteristics of Red OLEDs in the Emitting Layer Position Doped with DCM2 and Rubrene (DCM2와 Rubrene이 첨가된 발광층 위치에 따른 적색 OLED의 발광 특성)

  • Jung, Haeng-Yun;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.664-668
    • /
    • 2011
  • In this study, we have fabricated the red OLED (organic light emitting diode). The basic device structure is ITO/hole transporting layer, TPD(500 $\AA$)/red emitting layer, Alq3 doped with DCM2:rubrene(20 $\AA$)/electron transporting layer, Alq3(M) (500 $\AA$-M $\AA$)/LiF(15 $\AA$)/Al(1,000 $\AA$). The thickness of electron transporting layer(500 $\AA$-M $\AA$) changed 0, 20, 40, 60 $\AA$. Turn on voltage of the red OLED was 5 V, 6 V, 6.5 V and 7.5 V, respectively with electron transfer layer changed ratio. Luminance of red OLED was 4,504, 1,840, 1,490 and 1,130 cd/$m^2$, respectively. Optimized electron transfer layer position changed ratio of the red OLED was 0 $\AA$.

Study on characteristics of Red OLED doped with rubrene (rubrene을 도핑한 Red OLED 특성 연구)

  • Lee, Jeong-Ho;Jeong, Ji-Hun;Kim, Yeong-Gwan
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.02a
    • /
    • pp.166-167
    • /
    • 2005
  • The doping technique has been well known as method to get various emission color by choosing appropriate fluorescent dyes as a dopant. Usually, red emission of OLED device based on Alg$_{3}$ doped with DCM and rubrene is fabricated. Result that fabricate OLED device was manufactured by various doping density, we looked for the doping ratio of highest luminescent efficiency.

  • PDF

The Luminescent Properties of Red OLED Devices Doped with Two Dopants (2원 첨가 적색 OLED 소자의 발광특성)

  • Kim, Kyong-Min;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.531-535
    • /
    • 2007
  • To invest the luminescent characteristics of red light emitting OLED device, a dual dopant system was incorporated into the emitting layer. The multiple layer OLED device structure was $ITO(1500\;{\AA})/HIL(200\;{\AA})/a-NPD(600\;{\AA})/EML(300\;{\AA})/Alq_3(200\;{\AA})/LiF(7\;{\AA})/Al(1800\;{\AA})$. The concentrations of the rubrene dopant were tested at 0 vol.%, 3 vol.%, 6 vol.% and 9 vol.%. The maximum device efficiency and life time were obtained at the rubrene dopant concentration of 6 vol.%. Emission spectrum and color coordinate of devices showed no relationship with rubrene dopant concentration. Experiment results show that rubrene dopant absorbs energy from $Alq_3$ host and transfer it to RD1 dopant acting as an energy intermediate and influencing the device efficiency, finally the red light is emitted from the RD1 dopant.

Optical and Electrical Properties of Two-Wavelength White Tandem Organic Light-Emitting Diodes Using Red and Blue Materials (적색과 청색 물질을 사용한 2파장 방식 백색 적층 OLED의 광학 및 전기적 특성)

  • Park, Chan-Suk;Jua, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.581-586
    • /
    • 2015
  • We studied optical and electrical properties of two-wavelength white tandem organic light-emitting diodes using red and blue materials. White fluorescent OLEDs were fabricated using Alq3 : Rubrene (3 vol.% 5 nm) / SH-1 : BD-2 (3 vol.% 25 nm) as emitting layer (EML). White single fluorescent OLED showed maximum current efficiency of 9.7 cd/A, and tandem fluorescent OLED showed 18.2 cd/A. Commission Internationale de l'Eclairage (CIE) coordinates of single and tandem fluorescent OLEDs was (0.385, 0.435), (0.442, 0.473) at $1,000cd/m^2$, respectively. White hybrid OLEDs were fabricated using SH-1 : BD-2 (3 vol.% 10 nm) / CBP : $Ir(mphmq)_2(acac)$ (2 vol.% 20 nm) as EML. White single hybrid OLED showed maximum current efficiency of 7.8 cd/A, and tandem hybrid OLED showed 26.4 cd/A. Maximum current efficiency of tandem hybrid OLED was more twice as high as single OLED. CIE coordinates of single hybrid OLED was (0.315, 0.333), and tandem hybrid OLED was (0.448, 0.363) at $1,000cd/m^2$. CIE coordinates in white tandem OLEDs compared to those for single OLEDs observed red shift. This work reveals that stacked white OLED showed current efficiency improvement and red shifted emission than single OLED.

Yellow, Orange, and Red Phosphorescent Materials for OLED Lightings (OLED 조명을 위한 Yellow, Orange, Red 인광 재료)

  • Jung, Hyocheol;Park, Young-Il;Kim, Beomjin;Park, Jongwook
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.247-250
    • /
    • 2015
  • Organic light-emitting diode (OLED) research field has received great attention from academic and industrial circles. Recently, The technical feature of OLEDs is more and more attractive in the lighting market, including area emission characteristics different from other existing light sources. Features are environmentally friendly and efficient use of energy, large area, ultra-light weight, and ultrathin shape, etc. Furthermore, OLED light became the mainstream of next-generation lighting to replace the light emitting diode (LED) fluorescent light. This article summarizes phosphorescent emitting materials that have been applied to white OLEDs. In particular, the chemical structures and device performances of the important yellow, orange, and red phosphorescent emitting materials is discussed. Systematic classification and understanding of the phosphorescent materials can aid the development of new light-emitting materials.

A Study on the Fabrication and Characteristic Analysis of Organic Light Emitting Device using BAlq (BAlq를 적용한 유기발광소자의 제작 및 특성 분석에 관한 연구)

  • 오환술;황수웅;강성종
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.83-88
    • /
    • 2004
  • BAlq was fabricated as for hole blocking layer in the OLED devices to investigate its electrical and optical characteristics. Device structure was ITO/$\alpha$ -NPD/EML/BAlq/Alq3/Al:Li using TYG-201, DPVBi (4, 4 - Bis (2, 2 - diphenylethen-1 - yls) - Biphenyl), Alq and DCJTB (4-(dicyanomethylene)-2- (1-propyls)6-methy 4H-pyrans) as green emitting material, blue emitting material, host material for red emission and red emitting guest material respectively. The OLED device showed optimum working voltage and electron density at 600 cd/$m^2$ when thickness of BAlq is 25$\AA$ for RGB OLED devices while their efficiencies are better at 50$\AA$ of BAlq. Red and blue color OLEDs also fabricated using 30$\AA$ thickness of BAlq and compared with those without BAlq layer. BAlq was more effective in electrical properties such as working voltage, current density and efficiency of red OLED than blue and green ones. This study describes that 30$\AA$ is optimum thickness of BAlq for best performance of full color OLED devices when using BAlq as a hole blocking material.

Electrical characteristics of RGB OLED (RGB OLED의 전기적 특성 분석)

  • Yoo, Ji-Hong;Han, Jay-Ho;Choi, Byoung-Deog
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.281-281
    • /
    • 2009
  • Electrical analysis of red, green and blue (RGB) organic light emitting diode (OLED), which were measured at various temperatures from 230K to 370K by steps of 20K, were investigated using current-voltage(I-V) characteristics. Ideality factor and series resistance were obtained from the thermionic emission theory. Experimental results showed that the ideality factors were 2.12 for red, 3.80 for green, and 6.03 for blue OLED at 290K, respectively. The series resistance were 1960, 2190, 2630$\Omega$ for red, green and blue OLED at the same temperature. It was found that the OLED ideality factors were much higher than near unity for well-behaved silicon diodes, because of the organic material and multi-layer fabrication diode. In addition, the series resistance was near 2k$\Omega$ range. More researches are required to reduce both ideality factors and series resistance to increase the efficiency of OLEDs.

  • PDF

Luminescent characteristics of OLED doped with DCM2 and rubrene (Rubrene과 DCM2가 첨가된 적색 유기전계발광소자의 발광특성)

  • 박용규;성현호;김인회;조황신;양해석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.939-942
    • /
    • 2001
  • We fabricated Red Organic light-emitting devices(OLED). The Basic Device Structure is ITO/hole transfer layer, TPD(50nm)/red emitting layer, Alq3 doped with DCM2 or DCM2:rubrene(xnm)/electorn transfer layer, Alq3(50-xnm)/LiF(0.8nm)/Al(8nm) . The thickness of emitting layer(xnm) changed 5, 10, 20nm. we demonstrate red emitting OLED with dependent on the thickness and concentrators of Alq3 layer doped with DCM2 or co-doped with DCM2:ruberene. The Emission color and Brightness are changed with doping or co-doping condition, dopant concentarton. In the case of rubrene:DCM2 co-doped layer structure, the red color Purity and device efficiency is improved. The CIE index of rubrene co-doped OLED is x=0.67, y=0.31. By co-doping the Alq3 layer with DCM2, rubrene, EL efficiency improved from 0.38cd/A to 0.44cd/A in comparison whit DCM2 doped Alq3 layer.

  • PDF

A Study on the fabrication and Characteristic Analysis of Organic Light Emitting Device using Inorganic Metal Multi-layer (무기금속 다층박막을 적용한 유기발광소자의 제작 및 특성 분석에 관한 연구)

  • Hwang, Soo-Woong;Kang, Seong-Jong;Cho, Jae-Young;Kim, Tae-gu;Oh, Hwan-Sool
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.936-940
    • /
    • 2005
  • IMML(Inorganic metal multi-layer) was used as cathode in the OLED devices to reduce the reflectance or ITO and increase the contrast ratio. Device structure was $ITO/{\alpha}-NPD/Alq_3:DCJTB/Alq_3/IMML/Al$. $Alq_3$ and DCJTB (4 - (dicyanomethylene) - 2 - ( 1 - propyls) 6 - methy 4H - pyrans) as host material lot red emission and red emitting guest material. IMML made three different layer: thin aluminum layer, aluminum layer doped with silicon monoxide, thick aluminum layer. The red OLED device with IMML showed the average reflectance of $4.97\%$, and then normal OLED with or without polarizer showed the average reflectance of $4.55\%$, $46\%$ at visible range from 380 nm to 780 nm. The brightness of OLED with IMML at 13 V was 5557 $cd/m^2$, and that of normal OLED with polarizer was 4872 $cd/m^2$. IMML could be the substitution for polarizer with same reflection, low cost, easy process in flat panel display market.

High Contrast Red, Green, and Blue Organic Lightemitting Diodes using Inorganic Metal Multi Layers

  • Kim, You-Hyun;Lee, Sang-Youn;Song, Wook;Mong, Mei;Kim, Woo-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.787-790
    • /
    • 2009
  • High contrast red, green and blue organic light-emitting diodes were fabricated using inorganic metal multi layer composed of thin Al, KCl and thick Al and then were compared to optical and electrical characteristics with the attached polarizer and conventional OLEDs. Ambient light reflection of OLED using inorganic metal layer, polarizer and conventional metal layer were 29.2, 31.1 and 82.5% respectively. Optical characteristics of OLEDs using inorganic metal layer were max luminescence of 13040 cd/m2 and luminous efficiency of 2.12 cd/A at 8V whereas OLEDs using polarizer has 8456 cd/m2 and 1.43 cd/A at 8V each. OLEDs including inorganic metal multi layers show significant technical advantages in achieving high performance of OLED display with improved contrast ratio of 251:1, specifically in Red OLED.

  • PDF