• Title/Summary/Keyword: Reductive dechlorination

Search Result 70, Processing Time 0.026 seconds

Reductive Dechlorination of Groundwater Contaminated with PCE using Biobarrier: Column Study (생물벽체를 이용한 PCE로 오염된 지하수의 환원성 탐염소화: 칼럼 실험)

  • HwangBo, Hyun-Wook;Shin, Won-Sik;Song, Dong-Ik
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1147-1155
    • /
    • 2007
  • The applicability of in situ biobarrier or microbial filter technology for the remediation of groundwater contaminated with chlorinated solvent was investigated through column study. In this study, the effect of packing materials on the reductive dechlorination of PCE was investigated using Canadian peat, Pahokee peat, peat moss and vermicompost (or worm casting) as a biobarrier medium. Optimal conditions previously determined from a batch microcosm study was applied in this column study. Lactate/benzoate was amended as electron donors to stimulate reductive dechlorination of PCE. Hydraulic conductivity was approximately $6{\times}10^{-5}-8{\times}10^{-5}\;cm/sec$ and no difference was found among the packing materials. The transport and dispersion coefficients determined from the curve-fitting of the breakthrough curves of $Br^-$ using CXTFIT 2.1 showed no difference between single-region and two-region models. The reductive dechlorination of PCE was efficiently occurred in all columns. Among the columns, especially the column packed with vermicompost exhibited the highest reductive dechlorination efficiency. The results of this study showed the promising potential of in situ biobarrier technology using peat and vermicompost for the remediation of groundwater contaminated with chlorinated solvents.

Effect of electron donor for reductive dechlorination of PCE using biobarrier (Biobarrier를 이용한 PCE의 환원적 탈염소화시 전자공여체의 영향)

  • 황보현욱;신원식;김영훈;송동익
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.391-394
    • /
    • 2003
  • The applicability of in situ microbial filter or biobarrier technology for the remediation of soil and groundwater contaminated with chlorinated solvents was investigated. The efficiency and rates of reductive dechlorination of chlorinated solvents are known to be highly dependent on hydrogen concentration. In this study, the effect of electron donors on the reductive dechlorination of PCE was investigated using vermicompost (worm casting) and peat as permeable reactive barrier medium The effect of organic acids (lactate, butyrate and benzoate), yeast extract and vitamin $B_{l2}$ on the reductive dechlorination was investigated. Compared to the control (no electron donor added), addition of electron donors stimulated the dechlorinated rate. Among the electron donor treatments, lactate/benzoate amendment exhibited the highest dechlorination rate. Since vermicompost and peat are inexpensive and biodegradable and have high sorption capacity, they could be successfully used as biobarrier media, especially when electron donors (for example, lactate/benzoate) are added.d.

  • PDF

반연속 흐름 2단 토양 컬럼에서의 사염화 에틸렌(PCE)의 혐기성 완전탈염소화 환원 생분해

  • Choi Jeong-Dong;Kim Yeong;Gwon Su-Yeol;Park Hu-Won;An Yeong-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.131-134
    • /
    • 2005
  • Anaerobic reductive dechlorination of tetrachloroethylene(PCE) to ethylene was investigated by performing laboratory experiments using semi-continuous flow two-in-series soil columns. The columns were packed with soils obtained from TCE-contaminated site in Korea. Site ground water containing lactate(as electron donor and/or carbon source) and PCE was pumped into the soil columns. During the first operation with a period of 50 days, injected mass ratio of lactate and PCE was 620:1 and incomplete reductive dechlorination of PCE to cis-DCE was observed in the columns. However, complete dechlorination of PCE to ethylene was observed when the mass ratio increased to 5,050:1 in the second operation, suggesting that the electron donor might be limited during the first operation period. During the degradation of cis-DCE to ethylene, the concentration of hydrogen was $22{\sim}29mM$. These positive results indicate that the TCE-contaminated groundwater investigated in this study could be remediated through biological anaerobic reductive dechlorination processes.

  • PDF

Ex-situ Reductive Dechlorination of Carbon Tetrachloride by Iron Sulfide in Batch Reactor

  • Choi, Kyung-Hoon;Lee, Woo-Jin
    • Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.177-183
    • /
    • 2008
  • Ex-situ reductive dechlorination of carbon tetrachloride (CT) by iron sulfide in a batch reactor was characterized in this study. Reactor scaled-up by 3.5 L was used to investigate the effect of reductant concentration on removal efficiency and process optimization for ex-situ degradation. The experiment was conducted by using both liquid-phase and gas-phase volume at pH 8.5 in anaerobic condition. For 1 mM of initial CT concentration, the removal of the target compound was 98.9% at 6.0 g/L iron sulfide. Process optimization for ex-situ treatment was performed by checking the effect of transition metal and mixing time on synthesizing iron sulfide solution, and by determining of the regeneration time. The effect of Co(II) as transition metal was shown that the reaction rate was slightly improved but the improvement was not that outstanding. The result of determination on the regeneration time indicated that regenerating reductant capacity after $1^{st}$ treatment of target compound was needed. Due to the high removal rates of CT, ex-situ reductive dechlorination in batch reactor can be used for basic treatment for the chlorinated compounds.

Regiospecificity of Reductive Dechlorination of Chlorophenols in Mono- and Di-Chlorophenol Adapted Anoxic Sediments (Mono-와 Di-Chlorophenol에 적응시킨 혐기성 저질의 탈염소 특성)

  • 공인철;이석모
    • Journal of Environmental Science International
    • /
    • v.3 no.1
    • /
    • pp.65-76
    • /
    • 1994
  • The regiospecific potential for the reductive dechlorination of 2-, 3-, 4-, 2, 3-, 2, 4-, and 3, 4-chlorophenols (CPs) was studied in mono- and di-CP(DCP) adapted sediment slurries(10% solids). Freshwater sediments adapted to transform 2-CP dechlorinated all tested mono- and di-CPs except 4-CP without a lag period. Adaptation to 2-CP, thus, enhanced the onset of dechlorination of 3-CP and all ortho-substituted CPs tested. Sediment adapted to transform 3-CP dechlorinated all test CPs, except 4-CP and 2, 4-DCP, without a lag period. Sediment adapted to individual DCPs (2, 3-, 2, 4-, and 3, 4-DCP_ exhibited dechlorination(no lag phase) of 2-CP, 2, 3-, 2, 4-, and 3, 4-CDP. Interestingly, meta-cleavage of 3, 4-DCP in all tested adapted sediment occurred, while para-cleavage occurred in 3, 4-DCP adapted sediment. Sediment adapted to dechlorinate ortho and meta-chlorines exhibited a preference for meta following ortho-cleavage, but not for para-cleavage, while the preference for reductive dechlorination was ortho>meta>para for mono-CPs and ortho>para>meta for DCPs in unadapted freshwater anoxic sediments.

  • PDF

Reductive Dechlorination of Chlorinated Phenols in Bio-electrochemical Process using an Electrode as Electron Donor (전극을 전자공여체로 이용한 생물전기화학공정에서의 염소화페놀의 탈염소화)

  • Jeon, Hyun-Hee;Pak, Dae-Won
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.134-138
    • /
    • 2007
  • It was investigated whether an electrode could serve as an electron donor for biological reductive dechlorination of chlorinated phenols in the bio-electrochemical process. There was no dechlorination in the absence of current and scanning electron microscope image showed that the electrode surface was covered with microorganisms. As a result, the electrode attached cells was responsible for reductive dechlorination. Also, initial high chlorinated phenol concentration such as $437mg/{\ell}$ was rapidly reduced within 5 hours. The maximum dechlorination rate using Monod equation was $5.95mg{\ell}$-h($cm^2$ (electrode surface area)) in the bio-electrochemical reactor.

Effect of Electron Donor on the Reductive Dechlorination of PCE in Groundwater Using Biobarrier: Batch Experiment (생물벽체를 이용한 지하수내 PCE의 환원성 탈염소화시 전자공여체의 영향: 회분식 실험)

  • HwangBo, Hyun-Wook;Shin, Won-Sik;Kim, Young-Hun;Song, Dong-Ik
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.22-37
    • /
    • 2006
  • The applicability of biobarrier or in situ microbial filter technology for the remediation of groundwater contaminated with chlorinated solvent was investigated through batch microcosm study. The efficiency and rates of reductive dechlorination of tetrachloroethylene (PCE) are known to be highly dependent on hydrogen concentration. In this study, the effect of electron donors on the reductive dechlorination of PCE was investigated using vermicompost (or worm casting) and peat as a biobarrier medium. The effect of organic acids (lactate, butyrate and benzoate), yeast extract and vitamin $B_{12}$ on the reductive dechlorination was investigated. In the absence of biobarrier medium (adsorbent), addition of electron donors stimulated the dechlorination rate of PCE compared to the control experiment (i.e., no electron donor added). Among the treatments, addition of lactate or lactate/benzoate as hydrogen donor exhibited the highest dechlorination rate ($k_1=0.0260{\sim}0.0266\;day^{-1}$). In case of using vermicompost as a biobarrier medium, amendment of lactate/benzoate exhibited the highest dechlorination rate following with a pseudo-first-order degradation rate constant of $k_1=0.0849\;day^{-1}$. In contrast, when Pahokee peat was used as a biobarrier medium, either butyrate or lactate addition exhibited the highest dechlorination rate with $k_1$ values of 0.1092 and $0.1067\;day^{-1}$, respectively. The results of this study showed the potential applicability of in situ biobarrier technology using vermicompost or peat as a barrier material for the remediation of groundwater contaminated with chlorinated solvent.

Reductive Dechlorination of Polychlorinated Biphenyls as Affected by Natural Halogenated Aromatic Compounds

  • Kim Jongseol;Lee Ahmi;Moon Yong-Suk;So Jae-Seong;Koh Sung-Cheol
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.23-28
    • /
    • 2006
  • We investigated the effects of halogenated aromatic compounds (HACs) including naturally occurring ones (L-thyroxine, 3-chloro-L-tyrosine, 5-chloroindole, 2-chlorophenol, 4-chlorophenol and chlorobenzene) on polychlorinated biphenyl (PCB) dechlorination in sediment cultures. A PCB-dechlorinating enrichment culture of sediment microorganisms from the St. Lawrence River was used as an initial inoculum. When the culture was inoculated into Aroclor 1248 sediments amended with each of the six HACs, the extent of dechlorination was not enhanced by amendment with HACs. The dechlorination patterns in the HAC-amended sediments were nearly identical to that of the HAC-free sediments except the 3-chloro-L-tyrosine-amended ones where no dechlorination activity was observed. When these sediment cultures were transferred into fresh sediments with the same HACs, the dechlorination specificities remained the same as those of the initial inoculations. Thus, in the present study, the substrate range of the highly selected enrichment culture could not be broadened by the HACs. It appears that HACs affect PCB dechlorination mainly through population selection rather than enzyme induction of single population.

Prediction of Pathway and Toxicity on Dechlorination of PCDDs by Linear Free Energy Relationship (다이옥신의 환원적 탈염화 분해 경로와 독성 변화예측을 위한 LFER 모델)

  • Kim, Ji-Hun;Chang, Yoon-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.125-131
    • /
    • 2009
  • Reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDDs) and its toxicity change were predicted by the linear free energy relationship (LFER) model to assess the zero-valent iron (ZVI) and anaerobic dechlorinating bacteria (ADB) as electron donors in PCDDs dechlorination. Reductive dechlorination of PCDDs involves 256 reactions linking 76 congeners with highly variable toxicities, so is challenging to assess the overall effect of this process on the environmental impact of PCDD contamination. The Gibbs free energies of PCDDs in aqueous solution were updated to density functional theory (DFT) calculation level from thermodynamic results of literatures. All of dechlorination kinetics of PCDDs was evaluated from the linear correlation between the experimental dechlorination kinetics of PCDDs and the calculated thermodynamics of PCDDs. As a result, it was predicted that over 100 years would be taken for the complete dechlorination of octachlorinated dibenzo-p-dioxin (OCDD) to non-chlorinated compound (dibenzo-p-dioxin, DD), and the toxic equivalent quantity (TEQ) of PCDDs could increase to 10 times larger from initial TEQ with the dechlorination process. The results imply that the single reductive dechlorination using ZVI or ADB is not suitable for the treatment strategy of PCDDs contaminated soil, sediment and fly ash. This LFER approach is applicable for the prediction of dechlorination process for organohalogen compounds and for the assessment of electron donating system for treatment strategies.

PCE, TCE로 오염된 지하수내 미생물 특성 및 분포

  • 권수열;김진욱;박후원;이진우;김영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.158-161
    • /
    • 2004
  • Chlorinated aliphatic hydrocarbons (CAHs) especially perchlorethylene (PCE) and trichlooethylene (TCE) are common groundwater contaminants in Korea. PCE and TCE were often reductively dechiorinated in an aquifer. Several isolates dechlorinate PCE to TCE or cis-1,2 dichloroethylene (c-DCE) were obtained from contaminated and pristine sites in USA and Europe. However in Korea, no information on indigenous microorganism being involved in reductive dechlorination of PCE and TCE is available and different dechlorinating microorganisms might be reside in Korea, since geochemical, and hydrogeological conditions are different, compared to those in the other sites. So we evaluate that: 1) if reductive dechlorinating microorganisms are present in PCE-contaminated site in Korea, 2) if so, what kinds of microorganisms are present; 3) to what extent PCE is reductively dechlorinated. As a results in some PCE-contaminated aquifers in Korea other dechlorinating microorganisms but Dehalococcoides ethenogenes may be responsible for PCE dechlorination. More detailed molecular works are required to evaluate that different dechlorinating microorganisms would reside in Korea.

  • PDF