• Title/Summary/Keyword: Redundant Actuation

Search Result 37, Processing Time 0.029 seconds

Optimal Redundant Actuation of Parallel Manipulators with High Operational Stiffness (고강성 병렬형 로봇의 최적 여유 구동)

  • Kim, Sung-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.181-189
    • /
    • 2000
  • This paper presents the optimal redundant actuation of parallel manipulators for complicated robotic applications such as cutting grinding drilling and digging that require a high degree of operational stiffness as well as the balance between force applicability and dexterity. First by taking into account the distribution(number and location) of active joints the statics and the operational stiffness of a redundant parallel manipulator are formulated and the effects of actuation redundancy are analyzed, Second for given task requirements including joint torque limit task force maximum allowable disturbance and maximum allowable deflection the task execution conditions of a redundant parallel manipulator are derived and the efficient testing formulas are provided. Third to achieve high operational stiffness while maintaining moderate dexterity the redundant actuation of a parallel manipulator is optimized which determines the optimal distribution of active joints and the optimal internal joint torque, Finally the simulation results for the optimal redundant actuation of a planar parallel manipulator are given.

  • PDF

Performance Analysis and Optimal Actuator Sizing for Anthropomorphic Robot Modules with Redundant Actuation (여유구동 인체형 로봇 모듈의 성능해석 및 구동장치 최적설계)

  • 이상헌;이병주;곽윤근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.181-192
    • /
    • 1995
  • In this study, we introduce new types of planar 2 degree-of-freedom robot modules resembling the musculoskeletal structure of the human arm with actuation redundancy. First, for the given actuator sizes the performance analysis for the manipulator with redundant actuation and without redundant actuation is performed with respect to maximum load handling capacity, maximum hand velocity, and maximum hand acceleration. Secondly an algorithm which decides optimal actuator sizes for the given operational performances is introduced, and the optimal actuator sizes for a robot module with four redundant actuation are obtained. The algorithms employed in this paper will be useful to analyze the robot performances and to determine the actuator sizes for general robot manipulators.

Development of a five-bar finger with redundant actuation (여유구동을 이용한 5관절 휴먼핑거의 개발)

  • 이재훈;이병주;오상록;김병호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1613-1616
    • /
    • 1997
  • In order to develop a human hand mechanism, a 5-bar finger with redundant actuation is designed and implemented. an optimal set of acutator locations and link lengths for the case of one redundant actuator is obtained by employing a composite design index which simulataneously consider several performance indices such as workspace, isotropic index, and force transmission ratio. Each joing is driven by an compact actuator mechanism having ultrasonic motor and a gear set with poeneiometer an controlled by VME Bus-based control system.

  • PDF

Analysis of the Redundant Actuation Characteristics of the Planar 3-DOF Parallel Mechanism (평면형 3자유도 병렬 메커니즘의 여유 구동 특성 분석)

  • Jeon, Jung In;Oh, Hyun Suk;Woo, Sang Hun;Kim, Sung Mok;Kim, Min Gun;Kim, Whee Kuk
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.194-205
    • /
    • 2017
  • A redundantly actuated planar 3-degree-of-freedom parallel mechanism is analyzed to show its high application potential as a haptic device. Its structure along with the closed form forward position solutions is briefly discussed. Then its geometric and kinematic characteristics via singularity analysis, the kinematic isotropy index, and the input-output force transmission ratio are investigated both for the redundantly actuated cases and for the non-redundantly actuated case. In addition, comparative joint torque simulations of the mechanism with different number of redundant actuations as well as without redundant actuation are conducted to confirm the improved joint torque distribution characteristics. Through these analyses it is shown that the geometric and kinematic characteristics of the redundantly actuated mechanism are superior to the ones of the mechanism without redundant actuation. Thus, it can be concluded that the suggested planar mechanism with redundant actuation has a very high potential for haptic device applications.

Biomimetic Trajectory Planning Via Redundant Actuation (여유구동을 활용한 생체모방 궤적계획)

  • 이재훈;이병주
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.456-465
    • /
    • 2003
  • It is well-known that bio-systems does not calculate inverse dynamics for trajectory planning, but they move by proper modulation of system impedances. Inspired by bio-systems, a biomimetic trajectory planning method is proposed in this work. This scheme is based on employment of redundant actuation which prevails in bio-systems. We discuss that for the generation of the biomimetic trajectory, intelligent structure of bio-systems plays an important role. Redundant actuation and kinematic redundancy fall into such a category of intelligent structure. The proposed biomimetic trajectory planning modulates the complete dynamic behavior such as natural frequencies and damping ratios by using the intelligent structure. Experimental work is illustrated to show the effectiveness of the proposed biomimetic trajectory planning for a five-bar mechanism with redundant actuators.

Complete Identification of Isotropic Configurations of a Caster Wheeled Mobile Robot with Nonredundant/Redundant Actuation

  • Kim Sung-Bok;Moon Byung-Kwon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.486-494
    • /
    • 2006
  • In this paper, we present the complete isotropy analysis of a caster wheeled omnidirectional mobile robot (COMR) with nonredundant/redundant actuation. It is desirable for robust motion control to keep a COMR close to the isotropy but away from the singularity as much as possible. First, with the characteristic length introduced, the kinematic model of a COMR is obtained based on the orthogonal decomposition of the wheel velocities. Second, a general form of the isotropy conditions of a COMR is given in terms of physically meaningful vector quantities which specify the wheel configuration. Third, for all possible nonredundant and redundant actuation sets, the algebraic expressions of the isotropy conditions are derived so as to identify the isotropic configurations of a COMR. Fourth, the number of the isotropic configurations, the isotropic characteristic length, and the optimal initial configuration are discussed.

Analysis on Active spring effect in human-body having redundant actuation with application to motion frequency (여유구동을 지닌 인체의 능동스프링 현상에 대한 해석과 운동주파수 제어방식으로의 적용)

  • Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.977-989
    • /
    • 1999
  • The purpose of this study is to analyze how the human body having more muscles than its degree-of-freedom modulates an effective stiffness using redundant actuation, and to apply this concept to the design and control of advanced machines which requires adaptable spring. To investigate the adaptable stiffness phenomenon due to redundant actuation in the human body, this paper derives a general stiffness model of the Human body. In particular, for a planar 1 DOF human arm model, a planar 2 DOF human arm model, a spherical 3 DOF shoulder model, a 4 DOF human arm model, and a 7 DOF human arm model, the required nonlinear geometry ad the number of required actuator for successful modulation of the effective stiffness are analyzed along with a load distribution method for modulation of the required stiffness of such systems. Secondly, the concept of motion frequency modulation is introduced to show the usefulness of adaptive stiffness modulation. The motion frequency modulation represents a control of stiffness and / or inertia properties of systems. To show the effectiveness of the proposed algorithm, simulations are performed for 2 DOF anthropomorphic robot.

  • PDF

Kinematic Modeling and Analysis of Omni-Directional Mobile Robots with Redundant Actuation (여유구동을 지니는 전방향 모바일 로봇의 기구학 모델링 및 해석)

  • Yi, Byung-Ju;Kim, Wheekuk;Yang, Seong-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.766-773
    • /
    • 2001
  • Omni-directional mobile robots have been popularly employed in several application areas. However, the kinematics for these systems have not been clearly identified, specially for redundantly actuated case which is common in omni-directional mobile robot such as the Nomadic model. For such mobile robot systems, exploitation of redundant actuation as well as singularity analysis has not been extensively addressed. In light of this fact, this paper introduces two different kinematic approaches for omni-directional mobile robots. Then, a singular-free load distribution scheme for redundantly actuated three-wheeled omni-directional mobile robot is proposed. Through simulation, several advantages of redundantly actuated mobile robot in aspect of singularity avoidance, minimization of torque norm, and exploiting several subtasks are presented.

  • PDF

Complete Identification of Isotropic Configurations of a Caster Wheeled Mobile Robot with Nonredundant/Redundant Actuation

  • Kim, Sung-Bok;Moon, Byung-Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2356-2361
    • /
    • 2005
  • In this paper, we present a complete isotropy analysis of a caster wheeled omnidirectional mobile robot(COMR) with nonredundant/redundant actuation. The motivation of this work is that the omnidirectional mobility loses significance in motion control unless the isotropy characteristics is maintained well. First, with the characteristic length introduced, the kinematic model of a COMR is obtained based on the orthogonal decomposition of the wheel velocities. Second, a general form of the isotropy conditions of a COMR is given in terms of physically meaningful vector quantities which describe the wheel configurations. Third, for all possible nonredundant and redundant actuation sets, the algebraic expressions of the isotropy conditions are derived to completely identify the isotropic configurations of a COMR. Fourth, the number of the isotropic configurations and the characteristic length required for the isotropy are discussed.

  • PDF

Torque Distribution Control of 3RRR Redundant Parallel Robot (여유구동 3RRR 병렬로봇의 힘분배 제어에 관한 연구)

  • Lee, Sang-Moon;Lee, Jeh-Won;Shim, Ho-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.72-79
    • /
    • 2008
  • In the redundant actuation system which has more actuators than a system's mobility, there are various method to determine actuated torques because those are not determined uniquely. This paper presents a torque distribution method using weighted-pseudoinverse to optimize the maximum torque of various actuated inputs of the redundant system. The various weighting factor of weighted-pseudoinverse is studied to reduce maximum actuated torque. This method is experimentally applied to 3RRR parallel robot, which shows that presented method can efficiently reduce the maximum actuated torque.