• Title/Summary/Keyword: Rees algebra

Search Result 5, Processing Time 0.026 seconds

DEPTHS OF THE REES ALGEBRAS AND THE ASSOCIATED GRADED RINGS

  • Kim, Mee-Kyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.210-214
    • /
    • 1994
  • The purpose of this paper is to investigate the relationship between the depths of the Rees algebra R[It] and the associated graded ring g $r_{I}$(R) of an ideal I in a local ring (R,m) of dim(R) > 0. The relationship between the Cohen-Macaulayness of these two rings has been studied extensively. Let (R, m) be a local ring and I an ideal of R. An ideal J contained in I is called a reduction of I if J $I^{n}$ = $I^{n+1}$ for some integer n.geq.0. A reduction J of I is called a minimal reduction of I. The reduction number of I with respect to J is defined by (Fig.) S. Goto and Y.Shimoda characterized the Cohen-Macaulay property of the Rees algebra of the maximal ideal of a Cohen-Macaulay local ring in terms of the Cohen-Macaulay property of the associated graded ring of the maximal ideal and the reduction number of that maximal ideal. Let us state their theorem.m.m.

  • PDF

GRADED BETTI NUMBERS OF GOOD FILTRATIONS

  • Lamei, Kamran;Yassemi, Siamak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1231-1240
    • /
    • 2020
  • The asymptotic behavior of graded Betti numbers of powers of homogeneous ideals in a polynomial ring over a field has recently been reviewed. We extend quasi-polynomial behavior of graded Betti numbers of powers of homogenous ideals to ℤ-graded algebra over Noetherian local ring. Furthermore our main result treats the Betti table of filtrations which is finite or integral over the Rees algebra.

LOCALLY COMPLETE INTERSECTION IDEALS IN COHEN-MACAULAY LOCAL RINGS

  • Kim, Mee-Kyoung
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.261-264
    • /
    • 1994
  • Throughout this paper, all rings are assumed to be commutative with identity. By a local ring (R, m), we mean a Noetherian ring R which has the unique maximal ideal m. By dim(R) we always mean the Krull dimension of R. Let I be an ideal in a ring R and t an indeterminate over R. Then the Rees algebra R[It] is defined to be(omitted)

  • PDF

EQUIMULTIPLE GOOD IDEALS WITH HEIGHT 1

  • Kim, Mee-Kyoung
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.127-135
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m. Then we say that I is an equimultiple good ideal in A, if I contains a reduction Q = ( $a_1$, $a_2$,ㆍㆍㆍ, $a_{s}$ ) generated by s elements in A and G(I) =(equation omitted)$_{n 0}$ $I^{n}$ / $I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1 - s, where s = h $t_{A}$ I and a(G(I)) denotes the a-invariant of G(I). Let $X_{A}$$^{s}$ denote the set of equimultiple good ideals I in A with h $t_{A}$ I = s, R(I) = A [It] be the Rees algebra of I, and $K_{R(I)}$ denote the canonical module of R(I). Let a I such that $I^{n+l}$ = a $I^{n}$ for some n$\geq$0 and $\mu$$_{A}$(I)$\geq$2, where $\mu$$_{A}$(I) denotes the number of elements in a minimal system of generators of I. Assume that A/I is a Cohen-Macaulay ring. We show that the following conditions are equivalent. (1) $K_{R(I)}$(equation omitted)R(I)+as graded R(I)-modules. (2) $I^2$ = aI and aA : I$\in$ $X^1$$_{A}$._{A}$./.

NOTE ON GOOD IDEALS IN GORENSTEIN LOCAL RINGS

  • Kim, Mee-Kyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.479-484
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m and d = dim A. Then we say that I is a good ideal in A, if I contains a reduction $Q=(a_1,a_2,...,a_d)$ generated by d elements in A and $G(I)=\bigoplus_{n\geq0}I^n/I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1-d, where a(G(I)) denotes the a-invariant of G(I). Let S = A[Q/a$_1$] and P = mS. In this paper, we show that the following conditions are equivalent. (1) $I^2$ = QI and I = Q:I. (2) $I^2S$ = $a_1$IS and IS = $a_1$S:sIS. (3) $I^2$Sp = $a_1$ISp and ISp = $a_1$Sp :sp ISp. We denote by $X_A(Q)$ the set of good ideals I in $X_A(Q)$ such that I contains Q as a reduction. As a Corollary of this result, we show that $I\inX_A(Q)\Leftrightarrow\IS_P\inX_{SP}(Qp)$.