• Title/Summary/Keyword: Refractive index of liquid

Search Result 79, Processing Time 0.029 seconds

Measurement of Effective Refractive Index of Nematic Liquid Crystal in Fabry-Perot Etalon

  • Ko, Myeong Ock;Kim, Sung-Jo;Kim, Jong-Hyun;Lee, Bong Wan;Jeon, Min Yong
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.346-350
    • /
    • 2015
  • We report a measurement of the effective refractive index of a nematic liquid crystal (NLC) inside a Fabry-Perot (FP) etalon according to the applied electric fields. The effective refractive index of the NLC depends on the intensity of the applied electric field. A wavelength-swept laser with a polygon-scanner-based wavelength filter is used as a wide-band optical source to measure the effective refractive index of the NLC. The bandwidth of the optical source is greater than 90 nm around 1300 nm. The fabricated NLC FP etalon consists of glass substrates, gold layers as the electrodes with highly reflective surfaces, polyimide layers as the planar alignment layers, and an LC layer. Furthermore, we measured the Freedericksz transition voltages for three types of NLC FP etalons having thicknesses of $30.6{\mu}m$, $55.4{\mu}m$, and $108.8{\mu}m$. The Freedericksz transition voltages in the three cases are nearly equal. The measured effective refractive indices in the three cases decreased from 1.67 to 1.51 as the applied electric field intensity was increased. Beyond the threshold electric field, the effective refractive indices quickly decreased and eventually saturated at a value of 1.51 for all cases.

Measurement of the Refractive Index of a Mixed Polymer by a Prism Spectrometer and its Application (프리즘 분광계를 이용한 혼합 폴리머의 굴절률 측정과 응용)

  • Kim, Ji-Young;Ju, Young-Gu
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.221-228
    • /
    • 2017
  • We measured the refractive index of a mixed polymer (NOA61, NOA84) in the liquid and solid states. First we made a hollow prism and filled it with UV (ultraviolet) epoxy. Measurement of the apex angle and the minimum-deviation angle gave the refractive index of the liquid polymer. To measure the refractive index of the solid polymer, an additional structure was included in the hollow prism, and the UV epoxy filling in the hollow prism was hardened. In both cases of liquid and solid polymers, the refractive index of the mixed polymer turned out to be proportional to the mix ratio. These results provide a method to vary the focal length of a double stacked cylindrical microlens array using UV epoxy.

Variable Optical Attenuator using Optical Coupling between a Side Polished Fiber and Refractive Index Matching Liquid (측면 연마된 광섬유와 굴절률 정합액사이의 광결합을 이용한 가변 광 감쇠기)

  • Kim, Kwang-Taek;Song, Jae-Won
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.9
    • /
    • pp.50-55
    • /
    • 1999
  • In this paper we proposed a variable optical attenuator using the side polished fiber coupled with a refractive index matching liquid. Small variation of refractive index of matching liquid can induce very large change of optical loss due to the coupling between the fiber mode and radiation mode. The thermo-optic effect of matching liquid was used to ontrol the optical attenuation. The side polished fiber block was fabricated using the silicon V gloove. Experimental results showed that $5^{\circ}C$ temperature variation was enough to adjust full range attenuation. The polarization dependent loss and insertion loss of the fabricated devices were 0.5dB and 0.2dB respectively.

  • PDF

Measurement of Thermo-Optic Coefficient of a Liquid Using a Cascade of Two Different Fiber Bragg Gratings

  • Kim, Kwang Taek;Kim, In Soo
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.95-99
    • /
    • 2013
  • We proposed and demonstrated a fiber optic sensor for detecting the thermo-optic coefficient of a liquid, based on a cascade of two different FBGs. One of the two FBGs was etched, and its cladding was removed, for evanescent wave coupling with an external liquid. The Bragg wavelength of the non-etched FBG was used as a reference for the temperature of the surrounding liquid. The refractive index (RI) and thermo-optic (T-O) coefficient of a liquid can be detected from the difference between the Bragg wavelengths of the two FBGs, and the variation of the difference in accordance with temperature.

Liquid Refractive Index Sensor Based on Cladded Plastic Optical Fiber Taper (클래딩이 있는 플라스틱 광섬유 테이퍼를 이용한 용액 굴절률 센서)

  • Kim, Kwang-Taek;Kim, Hoe-Man;Yun, Jung-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.151-155
    • /
    • 2012
  • We have investigated a refractive index sensor based on a cladded plastic optical fiber taper. The optical transmission and sensing characteristics of the device were illuminated in terms of ray optics. The sensor devices showed that the optical transmittance strongly depends on the refractive index of the external medium surrounding the tapered region.

Measurement of Optical Properties of a Liquid Based on a Side-polished Optical Fiber (측면 연마 광섬유를 이용한 용액의 광학 특성 측정)

  • Lee, Hyeon Jin;Kim, Kwang Taek
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.195-198
    • /
    • 2014
  • In this paper, a measurement method to obtain the optical properties of a liquid base on a side-polished single mode fiber was proposed and demonstrated. The device showed periodic resonance coupling against wavelengths. The refractive index and dispersion characteristics of a liquid were calculated by use of the spacings of periodic resonance wavelengths of the device. The thermo-optic coefficient of the liquid was obtained by monitering the shift of resonance wavelengths of the devices with change of environmental temperature.

Electro-Optical Characterization of Polymer Dispersed Liquid Crystals for Various Concentrations of Prepolymer (전폴리머 조성에 따른 고분자 분산형 액정의 전기 광학 특성 평가)

  • Yang, Kee-Jeong;Yoon, Do-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.891-895
    • /
    • 2010
  • Polymer dispersed liquid crystal (PDLC) films were prepared by the phase separation method using the liquid crystal (E7) and prepolymers. This work investigated the electro-optical characteristics of various PDLC films. In order to have good contrast ratio, the polymer refractive index must be adjusted to the ordinary refractive index of the liquid crystal. The driving voltage of PDLC films were mainly affected by elastic deformation. E7-Ebecryl810-IOA-TMPTA-HMPPO system had good threshold voltage and driving voltage and E7-Ebecryl810-EHA-PEGDA-HMPPO system had good contrast ratio.

Electro-optic Characteristics of Polymer Dispersed Liquid Crystal Films

  • Yang, Kee-Jeong;Kim, Chang-Geun;Lee, Seung-Chul;Do, Yun-Seon;Kim, Bae-In;Choi, Byeong-Dae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.902-903
    • /
    • 2009
  • Polymer Dispersed Liquid Crystal (PDLC) films were prepared using the phase separation method with liquid crystal and a newly developed prepolymer. This study investigated the electro-optic characteristics of the PDLC film at various temperatures. It was found that as temperatures increased, the voltage varied, and that the ordinary refractive index of the liquid crystal and the polymer refractive index in the composite had similar dependence at various temperatures.

  • PDF

Optical Studies of a Pure and Dye Doped Nematic Liquid Crystal E-24

  • Chandel, V.S.;Manohar, S.;Shukla, J.P.;Manohar, R.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.221-224
    • /
    • 2012
  • The present paper reports the comparative optical behavior of a pure nematic mixture E-24 and its anthraquinone dye doped sample. The variation in the ordinary and extraordinary refractive index ($n_o$, $n_e$) of the pure and dye doped samples with temperature has been discussed and it has been found that doped sample have a less refractive index compared to the pure sample. The variation in the order parameter for pure and doped samples with temperature has been discussed and it has been seen that the doped sample has a higher order parameter; the possible reasons have been discussed. The variations in birefringence and optical transmittance have also been presented here.