• 제목/요약/키워드: Refractive power of surface

검색결과 41건 처리시간 0.03초

(-) 구면 렌즈 면의 반사상에 의한 굴절력 측정 (Measurement of Refractive Power by Reflective image on the Negative Spherical Lens)

  • 최운상;김대현
    • 한국안광학회지
    • /
    • 제9권2호
    • /
    • pp.417-421
    • /
    • 2004
  • 안경렌즈 면 위에 반사되는 상을 관찰하연 한 물체에 대해 두 개의 상이 나타나 있다. 이것은 렌즈 전면에서 반사되는 상과 렌즈 후면에서 반사되는 상이다. 이 상들은 렌즈 전, 후면의 굴절력에 의해 렌즈 면에서 반사되는 상이며, 렌즈 전체의 굴절력은 렌즈 전, 후면의 굴절력을 이용하면 얻을 수가 있다. 그러므로 렌즈 면 위에서 나타나는 상 크기 측정은 렌즈의 굴절력을 측정하는 기기의 도움 없이 렌즈의 굴절력을 측정하는 방법이 될 수 있다. 렌즈 면 위에서 측정된 두 개 반사상의 비와 굴절력을 측정하여 계산한 값과 비교하였다.

  • PDF

형상 분석에 의한 안경렌즈의 비구면 계수 추출 방법 (A method to extract the aspherical surface equation from the unknown ophthalmic lens)

  • 이호철;이남영;김건희;송창규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.430-433
    • /
    • 2004
  • The ophthalmic lens manufacturing processes need to extract the aspherical surface equation from the unknown surface since its real profile can be adjusted by the process variables to make the ideal curve without the optical aberration. This paper presents a procedure to get the aspherical surface equation of an aspherical ophthalmic lens. Aspherical form generally consists of the Schulz formula to describe its profile. Therefore, the base curvature, conic constant, and high-order polynomial coefficient should be set to the original design equation. To find an estimated aspherical profile, firstly lens profile is measured by a contact profiler, which has a sub-micrometer measurement resolution. A mathematical tool is based on the minimization of the error function to get the estimated aspherical surface equation from the scanned aspherical profile. Error minimization step uses the Nelder-Mead simplex (direct search) method. The result of the refractive power measurement is compared with the curvature distribution on the estimated aspherical surface equation

  • PDF

DC/RF Magnetron Sputter를 이용한 무반사 및 고반사 박막증착 (A thin film condition of material for AR and HR coating by the DC/RF Magnetron Sputter)

  • 양진석;조운조;이천;김동우;신춘교
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 디스플레이 광소자분야
    • /
    • pp.206-209
    • /
    • 2003
  • The purpose of AR and HR coating is acquire the very low reflection rate and the high reflection rate through the deposition of a thin film using the refraction ofmaterial. Basically if the high refractive material and the low refractive material are chosen and the condition for the experiment is determined, then we solve theproject with the optical design and multi thin film coating. First of all, we choose $SiO_2$for the low refractive material and $TiO_2$ for the high refractive material and apply Sputtering System easy to control the refraction rate and excellent in reconstruction to the equipment of thin film multiplication. For the control of the refraction rate and growth rate we modify RF Power and the ratio of Gas(Ar:O2), And we use Ellipsometer for estimation and analysis of the refraction rate and growth rate and AFM&SEM for the analysis of surface and component.

  • PDF

단면 형상 측정을 이용한 비구면 안경 렌즈의 최적 근사화된 설계 계수의 추정 방법 (Estimation Method of the Best-Approximated Form Factor Using the Profile Measurement of the Aspherical Ophthalmic Lens)

  • 이호철
    • 한국정밀공학회지
    • /
    • 제22권5호
    • /
    • pp.55-62
    • /
    • 2005
  • This paper presents mainly a procedure to get the mathematical form of the manufactured aspherical lens. Generally Schulz formula describes the aspherical lens profile. Therefore, the base curvature, conic constant. and high-order polynomial coefficient should be set to get the approximated design equation. To find the best-approximated aspherical form, lens profile is measured by a commercial stylus profiler, which has a sub-micrometer measurement resolution. The optimization tool is based on the minimization of the root mean square of error sum to get the estimated aspherical surface equation from the scanned aspherical profile. Error minimization step uses the Nelder-Mead simplex (direct search) method. The result of the lens refractive power measurement shows the experimental consistency with the curvature distribution of the best-approximated aspherical surface equation

Relationship between Surface Sag Error and Optical Power of Progressive Addition Lens

  • Liu, Zhiying;Li, Dan
    • Current Optics and Photonics
    • /
    • 제1권5호
    • /
    • pp.538-543
    • /
    • 2017
  • Progressive addition lenses (PAL) have very wide application in the modern glasses market. The unique progressive surface can make a lens have progressive refractive power, which can meet the human eye's different needs for distance-vision and near-vision. According to the national glasses fabrication standard, the difference between actual optical power after fabrication and nominal design value should be less than 0.1D over the lens effective area. The optical power distribution of PAL is determined directly by the surface. Consequently, the surface processing accuracy requirement is proposed. Beginning from the surface expressions of progressive addition lenses, the relationship equations between the surface sag and optical power distribution are derived. They are demonstrated through tolerance analysis and test of an example progressive addition lens with addition of 2.09D (5.46D-7.55D). The example addition surface is fabricated under given accuracy by a single-point diamond ultra-precision machine. The optical power of the PAL example is tested with a focal-meter after fabrication. The optical power addition difference between test result and design nominal value is 0.09D, which is less than 0.1D. The derived relationship between the surface error and optical power is verified from the PAL example simulation and test result. It can provide theoretical tolerance analysis proof for the PAL surface fabricating process.

Analysis of a Photonic Crystal Fiber Sensor with Reuleaux Triangle

  • Bing, Pibin;Huang, Shichao;Guo, Xinyue;Zhang, Hongtao;Tan, Lian;Li, Zhongyang;Yao, Jianquan
    • Current Optics and Photonics
    • /
    • 제3권3호
    • /
    • pp.199-203
    • /
    • 2019
  • The characteristics of a photonic crystal fiber sensor with reuleaux triangle are studied by using the finite element method. The wavelength sensitivity of the designed optical fiber sensor is related to the arc radius of the reuleaux triangle. Whether the core area is solid or liquid as well as the refractive index of the liquid core contributes to wavelength sensitivity. The simulation results show that larger arc radius leads to higher sensitivity. The sensitivity can be improved by introducing a liquid core, and higher wavelength sensitivity can be achieved with a lower refractive index liquid core. In addition, the specific channel plated with gold film is polished and then analyte is deposited on the film surface, in which case the position of the resonance peak is the same as that of the complete photonic crystal fiber with three analyte channels being filled with analyte. This means that filling process becomes convenient with equivalent performance of designed sensor. The maximum wavelength sensitivity of the sensor is 10200 nm/RIU and the resolution is $9.8{\times}10^{-6}RIU$.

국내 안경렌즈 광학적 요소 신뢰성 조사 (The Research on the Optical Reliability of Spectacle Lens in Korea)

  • 김태훈;예기훈;성아영
    • 한국안광학회지
    • /
    • 제13권1호
    • /
    • pp.43-48
    • /
    • 2008
  • 목적: 본 연구는 국내에 유통되고 있는 시력보정용 안경렌즈를 대상으로 국제표준 규격인 ISO와 식품의약품 안전청 의료기기에 대한 기준규격을 사용하여 기하광학적 특성에 대한 신뢰성을 평가하였다. 방법: 실험에서는 총 8개 회사 398개의 렌즈를 사용하였고, 굴절률별로 중굴절(1.55~1.56), 고굴절(1.60~1.61) 초고굴절(1.67)로 분류하여 실험하였다. 결과: 전체 렌즈에서 굴절력의 적합률은 85.18%로 나타났으며, 두께의 적합률은 90.00%, 표면검사의 적합률은 85.18%, 크기의 적합률은 96.23%, 광학적중심점의 위치 적합률은 99.50%로 나타났다. 결론: 기하광학적 특성에 대한 실험결과, 굴절력에 대하여 규격의 허용오차 범위를 벗어나는 제품이 많이 발견되었다. 프리즘 굴절력, 표면검사, 광학중심점의 위치항목에서는 기준 오차가 비교적 적은 것으로 나타났다. 렌즈의 크기, 렌즈의 두께에 대한 실험에서는 대부분의 표기율과 적합율이 허용오차 범위를 벗어나는 것으로 나타났다.

  • PDF

Variable Optical Fiber Attenuator Using Bending-Sensitive Fiber

  • Lee, Dong-Ho;Kwon, Kwang-Hee;Song, Jae-Won;Park, Jae-hee
    • Journal of the Optical Society of Korea
    • /
    • 제8권2호
    • /
    • pp.83-89
    • /
    • 2004
  • A variable optical attenuator with a bending-sensitive fiber (BSF) that can be used in optical networks is developed. The refractive index profile of the BSF is divided into four regions which are inner core, center dip of inner core, outer core and clad. The 3-dimensional finite difference beam propagation method (3D FD-BPM) is utilized to find the characteristics of the BSF, so the mode profile of the BSF and optical power attenuation according to the bending are investigated, and the equivalent model of the BSF is made. By using this equivalent model of the BSF, the BSF is fabricated, and the refractive index profile of the BSF is measured, which is similar to refractive index profile of the proposed BSF. The fabricated variable optical fiber attenuator (VOFA) consists of the BSF in a rectangular rubber ring with a fixed bend radius (BR) in a steady state. The VOFA using the proposed BSF was able to attenuate the optical power by more than about -38 ㏈ at certain wavelengths (1540∼1560 nm) based on adjusting the mechanical pressure applied to the upper surface of the rectangular rubber ring with the bent BSF. In addition, the proposed VOFA produced an insertion loss of 0.68 ㏈, polarization dependent loss (PDL) of about 0.5 ㏈, and return loss of less than -60 ㏈.

PECVD의 주파수 조건에 따른 $SiN_x$막 증착 (The Silicon Nitride Films according to The Frequency Conditions of Plasma Enhanced Chemical Vapor Deposition)

  • 최정호;노시철;정종대;서화일
    • 반도체디스플레이기술학회지
    • /
    • 제13권4호
    • /
    • pp.21-25
    • /
    • 2014
  • The silicon nitride ($SiN_x$) film for surface passivation and anti-reflection coating of crystalline silicon solar cell is very important and it is generally deposited by plasma enhanced chemical vapor deposition (PECVD). PECVD can be divided into low and high frequency method. In this paper, the $SiN_x$ film deposited by low and high frequency PECVD method was studied. First, to optimize the $SiN_x$ film deposited by low frequency PECVD method, the refractive index was measured by varying the process conditions like $SiH_4$, $NH_3$, $N_2$ gas rate, and RF power. When $SiH_4$ gas rate was increased and $NH_3$ gas rate was decreased, the refractive index was increased. The refractive index was also increased with RF power decline. Second, to compare the characteristics of the low and high frequency PECVD $SiN_x$ film, the refractive index was measured by varying $NH_3/SiH_4$ gas ratio and RF power and the minority carrier lifetime of before and after high temperature treatment process was also measured. The refractive index of both low and high frequency PECVD $SiN_x$ film was decreased with increase in $NH_3/SiH_4$ gas ratio and RF power. After high temperature treatment process, the minority carrier lifetime of both low and high frequency PECVD $SiN_x$ film was increased and increased degree was similar. The minority carrier lifetime of low frequency PECVD $SiN_x$ was increased from $11.03{\mu}m$ to $28.24{\mu}m$ and that of high frequency PECVD $SiN_x$ was increased from $11.60{\mu}m$ to $27.10{\mu}m$.

연령에 따른 각막난시와 내부난시의 변화 (Changes in Corneal and Internal Astigmatism with Age)

  • 이현;김정현;이성복;엄정희;이강오;이태용
    • 한국산학기술학회논문지
    • /
    • 제14권8호
    • /
    • pp.3933-3940
    • /
    • 2013
  • 본 연구의 목적은 연령별 난시빈도를 알아보고 굴절난시와 각막난시, 내부난시의 연령에 따른 변화와 변화요인을 알아보고자 하였다. 2010년 7월에 만5~59세의 청주지역 거주자 1,017명을 대상으로 굴절력과 각막전면굴절력을 자동굴절검사기로 측정하였다. 난시빈도는 전체적으로 22.7%이었고, 5~9세에 8.9%에서 20대에 36.8%로 증가하였다. 40대에는 19.2%로 감소하였다가 50대에 28.6%로 다시 증가하였다. 굴절난시와 각막난시, 내부난시의 $J_{45}$성분은 연령군에 상관없이 거의 일정하였으나 굴절난시와 각막난시의 J0성분은 30대 이후 감소하는 경향성을 보였다. 또한 $J_0$성분 중에서 수직방향 굴절력은 연령에 따라 변화가 없이 일정하였지만 수평방향 굴절력은 연령에 따라 큰 변화가 있었다. 연령에 따른 난시빈도의 변화는 수평방향 굴절력의 변화에 기인하는 것으로 판단된다.