• Title/Summary/Keyword: Regular Wave

Search Result 507, Processing Time 0.027 seconds

Study on Roll Motion Characteristics of a Rectangular Floating Structure in Regular Waves (규칙파 중 사각형 부유식 구조물의 횡동요 운동특성에 대한 연구)

  • Kim, Min-Gyu;Jung, Kwang-Hyo;Park, Sung-Boo;Lee, Gang-Nam;Park, Il-Ryong;Suh, Sung-Bu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.131-138
    • /
    • 2019
  • This study focused on the roll motion characteristics of a two-dimensional (2D) rectangular floating structure under regular beam sea conditions. An experiment was conducted in a 2D wave tank for a roll free decay test in calm water and the roll motion in a range of regular waves with and without heave motion to investigate the motion response and heave influence on the roll motion. A numerical study was carried out using Reynolds-averaged Navier Stokes (RANS)-based CFD simulations. A grid convergence test was conducted to accurately capture the wave condition on the free surface based on the overset mesh and wave forcing method. It was found in the roll free decay test that the numerical results agreed well with the experimental results for the natural roll period and roll damping coefficient. It was also observed that the heave motion had an impact on the roll motion, and the responses of the heave and roll motion from the CFD simulations were in reasonable agreement with those from the experiment.

Investigation of Applicability of OpenFOAM for Regular Wave Modeling of Floating Vertical Plate (부유식 연직판의 규칙파 모델링을 위한 오픈폼 적용성 검토)

  • Oh, Sang-Ho;Kim, Gunwoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.382-388
    • /
    • 2017
  • This study performed an OpenFOAM-based numerical modeling for simulating performance of wave reduction by a floating vertical plate. Based on the Waves2FOAM library, an internal wave generation and energy dissipation with sponge layers schemes were further implemented. The performance of wave generation and dissipation was first tested with a simple two-dimensional analysis. Then, numerical simulation was carried out with the experimental data of Briggs et al. (2001) for the two regular wave cases. In general, the modeling results agreed well with the experimental data, showing better agreement than the numerical analysis by WAMIT that is included in Briggs et al. (2001).

Study on Performance of a Floating-Type OWC Chamber in Regular Waves (부유식 OWC 챔버의 파랑중 거동특성 연구)

  • 홍도천;현범수;홍시영
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.43-51
    • /
    • 1992
  • The hydrodynamic performance of a floating-type OWC (Oscillating Water Column) chamber is studied numerically and experimentally in this study. The numerical approach based on two-dimensional linear theory of floating wave absorber was attempted to design an efficient wave energy absorber, while model test was performed in a wave basin to test a performance of designed model and validate the reliability of developed numerical code. The focus of study is placed mainly on the experimental study to evaluate the principal characteristics of the designed OWC chamber in regular waves. The effects of the variation of wave height on OWC device and of air pressure inside chamber are also presented. Finally, the measured results were compared with computed ones, and it was shown that the designed chamber works with high efficiency $(\eta_H>1$ over most of wave lengths covered by present study. It is therefore concluded that the developed code is capable of being successfully employed to design OWC chambers at various ocean environments, even though there exist some minor discrepancies between measured and computed results.

  • PDF

Declutching control of a point absorber with direct linear electric PTO systems

  • Zhang, Xian-Tao;Yang, Jian-Min;Xiao, Long-Fei
    • Ocean Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.63-82
    • /
    • 2014
  • Declutching control is applied to a hemispherical wave energy converter with direct linear electric Power-Take-Off systems oscillating in heave direction in both regular and irregular waves. The direct linear Power-Take-Off system can be simplified as a mechanical spring and damper system. Time domain model is applied to dynamics of the hemispherical wave energy converter in both regular and irregular waves. And state space model is used to replace the convolution term in time domain equation of the heave oscillation of the converter due to its inconvenience in analyzing the controlled motion of the converters. The declutching control strategy is conducted by optimal command theory based on Pontryagin's maximum principle to gain the controlled optimum sequence of Power-Take-Off forces. The results show that the wave energy converter with declutching control captures more energy than that without control and the former's amplitude and velocity is relatively larger. However, the amplification ratio of the absorbed power by declutching control is only slightly larger than 1. This may indicate that declutching control method may be inapplicable for oscillating wave energy converters with direct linear Power-Take-Off systems in real random sea state, considering the error of prediction of the wave excitation force.

Experimental Investigation of the Hydrodynamic Force Acting on Ship Hull and Rudder in Various Wave Direction

  • Nguyen, Van Minh;Nguyen, Tien Thua;Seo, Juwon;Yoon, Hyeon Kyu;Kim, Yeon Gyu
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.105-114
    • /
    • 2018
  • In the past, traditional methods of research on ship maneuvering performance were estimated in calm waters. However, the course-keeping ability and the maneuvering performance of a ship can be influenced by the presence of waves. Therefore, it is necessary to understand the maneuvering behavior of a ship in waves. In this study, the force acting on a moving ship and a rudder behind the model ship will be performed in regular waves in Changwon National University (CWNU). In addition, the prediction force acting on the rudder in calm waters was carried out and compared with those of Computational Fluid Dynamics (CFD). Model test in regular wave was performed to predict the force acting on the ship and the rudder behind the model ship in various wave directions. The effects of wavelength and wave direction on hydrodynamic forces acting on the ship hull versus rudder angle is discussed.

Bow hull-form optimization in waves of a 66,000 DWT bulk carrier

  • Yu, Jin-Won;Lee, Cheol-Min;Lee, Inwon;Choi, Jung-Eun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.499-508
    • /
    • 2017
  • This paper uses optimization techniques to obtain bow hull form of a 66,000 DWT bulk carrier in calm water and in waves. Parametric modification functions of SAC and section shape of DLWL are used for hull form variation. Multi-objective functions are applied to minimize the wave-making resistance in calm water and added resistance in regular head wave of ${\lambda}/L=0.5$. WAVIS version 1.3 is used to obtain wave-making resistance. The modified Fujii and Takahashi's formula is applied to obtain the added resistance in short wave. The PSO algorithm is employed for the optimization technique. The resistance and motion characteristics in calm water and regular and irregular head waves of the three hull forms are compared. It has been shown that the optimal brings 13.2% reduction in the wave-making resistance and 13.8% reduction in the added resistance at ${\lambda}/L=0.5$; and the mean added resistance reduces by 9.5% at sea state 5.

다방향 규칙파 중 선체, 타, 추진기에 작용하는 유체력 추정을 위한 실험적 연구

  • Seo, Ju-Won;;;;Jeon, Myeong-Jun;Yun, Hyeon-Gyu;Kim, Yeon-Gyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.4-6
    • /
    • 2018
  • Traditional methods of research on ship maneuvering performance were estimated in calm water. Ship maneuverability in waves is of vital importance for navigation safety of a ship (ITTC, 2008). The accurate estimation of force and moment acting on the ship and rudder behind propeller are necessary because the rudder, propeller and hull interaction is of key importance. In addition, course-keeping ability and maneuvering performance of a ship can be significantly affected by the presence of wave. In this study, the model test is performed in the regular wave in the square wave tank in Changwon National University and the hydrodynamic force acting on the ship hull and rudder behind the propeller in various wave directions is investigated. The effect of wavelength and wave direction on hydrodynamic force acting on ship and rudder behind propeller in regular waves is discussed.

  • PDF

CFD Simulation about Green Water on a Fixed FPSO in Regular Waves

  • Ha, Yoon-Jin;Nam, Bo Woo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.174-183
    • /
    • 2017
  • Numerical simulations were performed about the green water problem of a FPSO. Three regular waves in head sea were tested. A rectangular box-shaped FPSO was considered and it is assumed there is a vertical wall on the deck. For the numerical simulations, an open-source CFD code, OpenFOAM, was applied to solve the present problems. Focus is on wave fields around the FPSO, water flows and impact pressures on the deck. For the validation, the present calculation results were compared with the existing experimental of Lee et al. (2012) and Changwon university in KTTC Cooperative Study Report (2015). The statistical values and spatial distribution of the peak pressures are directly compared with the experimental data. Some discussions are made on the effects of the domain breadth on the Green water impact pressure.

Numerical Simulation of Flow around Free-rolling Rectangular Barge in Regular Waves (규칙파중 횡동요 하는 사각형 바지선 주위 유동의 수치모사)

  • Jung, Jae-Hwan;Yoon, Hyun-Sik;Kwon, Ki-Jo;Cho, Sung-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.15-20
    • /
    • 2011
  • This study aimed at validating the adopted numerical methods to solve two-phase flow around a two-dimensional (2D) rectangular floating structure in regular waves. A structure with a draft equal to one half of its height was hinged at the center of gravity and free to roll with waves that had the same period as the natural roll period of a rectangular barge. In order to simulate the 2D incompressible viscous two-phase flow in a wave tank with the rectangular barge, the present study used the volume of fluid (VOF) method based on the finite volume method with a standard turbulence model. In addition, the sliding mesh technique was used to handle the motion of the rectangular barge induced by the fluid-structure interaction. Consequently, the present results for the flow field and roll motion of the structure had good agreement with those of the relevant previous experiment.

Analysis on Interaction of Regular Waves and a Circular Column Structure (전산유체역학을 이용한 규칙파와 원형 기둥 구조물의 상호작용 해석)

  • Song, Seongjin;Park, Sunho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.63-75
    • /
    • 2017
  • In offshore environment, an accurate estimation of a wave-structure interaction has been an important issue for safe and cost effective design of fixed and floating offshore structures exposed to a harsh environment. In this study, a wave-structure interaction around a circular column was investigated with regular waves. To simulate 3D two-phase flow, open source computational fluid dynamics libraries, called OpenFOAM, were used. Wave generation and absorption in the wave tank were activated by the relaxation method, which implemented in a source term. To validate the numerical methods, generated Stokes 2nd-order wave profiles were compared with the analytic solution with deep water condition. From the validation test, grid longitudinal and vertical sizes for wave length and amplitude were selected. The simulated wave run-up and wave loads on the circular column were studied and compared with existing experimental data.