• Title/Summary/Keyword: Reinforced soil wall

Search Result 207, Processing Time 0.028 seconds

Analgesis of Clearly Reinforced Soil Wall Behavior by Model Test (모형시험에 의한 점성토 보강토벽의 거동분석)

  • 이용안;이재열;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.85-94
    • /
    • 1999
  • Reinforced Soil Wall has several merits comparing with conventional retaining wall. The conventional method has the limit of wall height, ununiform settlement of the foundation ground, quality assurance of the embankment body, shortening of construction period, economical construction and so on. Basis of previous mentioned things reinforced soil wall is the substitutional method of conventional retaining wall and its necessity is continuously increasing. The embanking material used in reinforced soil wall is generally limited such as a good quality sandy soil, and in many case constructors have to transfer such a good embanking material from far away to construction site. As a result, they would pressed by time and economy. If poor soils could be used embanking material, for example, clayey soil produced in-situ by cutting and excavation, the economical merit of reinforced soil wall would be increased more and more. Likewise, a lot of study about laboratory experimental behavior of reinforced soil wall using a good quality soil is being performed, but is rare study about clayey soil containing much volume of fine particle relatively in korea. In this study, the authors investigated behavior of the geosynthetic reinforced and unreinforced soil walls using clayey soil as embanking material in view of horizontal movement of walls, bearing capacity and reinforcement stress.

  • PDF

A Case study on reinforced retaining wall backfilled by soil cement (쏘일시멘트 보강토옹벽 사례 연구)

  • Lee, Myung-Jae;Jang, Ki-Soo;Lee, Jin-Hwan;Paik, Min-Cheol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.985-994
    • /
    • 2004
  • The application of the reinforced retaining wall has increased in the last 10 years in Korea. The height of reinforced wall is generally limited to less than 15m. It has been reported that the reinforced wall higher than 10m should have higher strength reinforcement or should reduce the lateral earth pressure of the reinforced wall to secure the stability of the wall. In this study, the reinforced retaining wall was constructed 14m high, backfilled by a mixture of soil and cement and instrumented on the reinforcement elements. The instrumented reinforced wall was monitored during and after construction. Field monitoring result shows that a backfill by a mixture of soil and cement reduced the tensile stress developed on the reinforcing elements and the reinforced wall backfilled by a mixture of soil and cement performed successful.

  • PDF

The Role of Wall Facing on the Stability of Reinforced Soil Wall (전면판의 연속성이 보강토체의 안정성에 미치는 영향)

  • 임유진;정종홍
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.465-472
    • /
    • 1999
  • A small scale model reinforced soil wall was constructed in a laboratory to investigate role of the wall facing and the effect of construction sequence on the wall. A panel type facing system and a block facing system are introduced for test. These two different types of facing adapt different construction procedure. The model wall is built with geogrid reinforcement, sand, and the facings on rigid surface. The model wall is instrumented with earth pressure gauges, LVDTs, and strain gauges. It is found in this study that the reinforced soil wall system built with geogrids and panel type facing system be the safest reinforced soil wall ever compared to the block type facing. Thus, it is recommended that study for the wall system be necessary for further wide usage in the future.

  • PDF

Analysis of the Behavior of Tiered Reinforced Soil Retaining Wall Considering the Offset Distance by Surcharge Load (상재하중 이격거리에 따른 다단식 보강토옹벽의 거동특성 분석)

  • Han, Jung-Geun;Kim, Ji-Sun;Hong, Ki-Kwon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.4
    • /
    • pp.31-40
    • /
    • 2007
  • Recently, the scale in the field of reinforced soil retaining wall has been grown up like tiered reinforced soil retaining wall. However, there have been increasing number of collapse accidents and large scale of collapse. The design manual adopted in the construction fields have been inconsistent in tiered reinforced soil retaining wall. Therefore, this study performed finite element analysis on 90 cases and analyzed characteristic behavior of lower wall which was one of the effect factors on the stability of tiered reinforced soil retaining wall. The facing displacement of each walls and the behavior of the whole ground were interpreted by the numerical analysis depending on the lower offset distance by the upper wall as well as the upper offset distance by the surcharge load. The results showed that the behavior of tiered reinforced soil retaining wall was differed by condition of surcharge load and each offset distance was found to be important factor.

A Study on the Deformation Behavior of Nonwoven Geotextiles Reinforced Soil Walls Based on Literature Reviews (문헌조사에 근거한 부직포 보강토옹벽의 거동에 관한 연구)

  • Won, Myoung-Soo;Kim, Tae-Wan;Roh, Jae-Kune;Kim, Hyoung-Wan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.1
    • /
    • pp.21-30
    • /
    • 2010
  • To understand the deformation behavior of nonwoven geotextiles(NWGT) reinforced soil wall, analyses of load-elongation properties, soil-reinforcement interface friction, laboratory model tests, and field cases throughout literature reviews are being studied in this paper. According to the analyses results, the stiffness and tensile strength of NWGT is increased in proportion to confinement pressures, and the interface shear strength at soil-NWGT appeared to be stronger than soil-geogrid interface. The deformation at the beginning of loading on NWGT reinforced soil wall is larger than geogrid reinforced soil wall, but the wall deformation with NWGT is smaller than the wall of geogrid after passing some loading point in laboratory model tests. Case analysis results have shown that the facing of NWGT reinforced soil wall should be rigid enough to be used as a permanent wall, and NWGT and in-situ poor soil can be used for reinforcement and backfill respectively if the wall is constructed as pre-reinforced soil body and with post-facing that has a full-height rigid concrete.

  • PDF

Reinforced Earth Retaining Wall of The Collapsed-A Case Study. (보강토옹벽의 사고사례에 관한 연구)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang;Lee, Soung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.958-967
    • /
    • 2004
  • This paper deal with cause and analysis about case of collapsed reinforced-soil retaining wall. The analysis of the cause was carried through experimentation, slop stability analysis and literature study. The experimentation treated the large direct shear test, the hydraulic conductivity test and the other basic test through backfill extracted from collapsed reinforced-soil retaining wall. The ultimate tensile strength was established by rib tensile strength test of geogrid. The analysis of internal and external stability of reinforced-soil retaining wall was performed on the basis of parameters. The result of analysis, reinforced-soil retaining wall and the slope at the dry season are stable. However, the factors that fine-grained soil at hydrometer test exceed the standard of the design, rainfall duration is too long at the time of collapse and monthly pricipitation is heavy are cause of the collapse.

  • PDF

Rainfall and Performance of Soil-Reinforced Regtaining Wall - Investigation on Case Histories (강우와 보강토 옹벽의 거동 - 시공 및 붕괴사례 고찰)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.3
    • /
    • pp.17-24
    • /
    • 2006
  • This paper presents the two field walls that demonstrate the effect of rainfall on the performance of soil-reinforced retaining wall. A field test wall constructed in Geotechnical Experimental Site at Sungkyunkwan University has been monitored for more than 8 months to study the long-term behavior of soil-reinforced retaining wall. The measured data showed a good correlation between rainfall and wall movement after wall completion. A case of failed soil-reinforced retaining wall also is presented to highlight the effect of rainfall on the performance of soil-reinforced retaining wall. Implications of the findings are discussed.

  • PDF

Investigation on Effect of Rainfall on Performance of Soil-Reinforced Regtaining Wall (강우가 보강토 옹벽의 거동에 미치는 영향에 관한 연구)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.3
    • /
    • pp.47-55
    • /
    • 2003
  • This paper presents the two field walls that demonstrate the effect of rainfall on the performance of soil-reinforced retaining wall. A field test wall constructed in Geotechnical Experimental Site at Sungkyunkwan University has been monitored for more than 8 months to study the long-term behavior of soil-reinforced retaining wall. The measured data showed a good correlation between rainfall and wall movement after wall completion. A case of failed soil-reinforced retaining wall also is presented to highlight the effect of rainfall on the performance of soil-reinforced retaining wall. Implications of the findings are discussed.

  • PDF

A Study on Practices and Troubles of Reinforced Soil Wall (국내 보강토 옹벽 적용 현황 및 문제점 조사 연구)

  • Park, Jong-Kwon;Lee, Kwang-Wu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.65-75
    • /
    • 2012
  • Since the modem reinforced soil wall technology was introduced in domestic civil engineering society in the year 1980, the reinforced soil walls have been extensively used because these technologies have advantages such as economical efficiency, graceful appearance, and easy construction. This paper describes the application of reinforced soil wall, design criteria, and construction problems. Many cases of troubles, which include a severe deformation of facing, cracks of facing block, overall sliding failure and so on, have been reported. Inappropriate design and construction management mainly induce these problems. The technological level of design and quantity control for reinforced soil wall is not sufficiently supported to cope with the growth quantity of reinforced soil wall construction market and the increasing number of construction companies. The unified standard design and construction criteria of reinforced soil wall should be established with the detail consideration of overall performance and stability. The quality control of design and construction, and cost of construction must be seriously executed to construct a high quality of reinforced soil wall.

Instrumentation of A Two-Level of Soil-Reinforced Segmental Retaining Wall (계단식 지오그리드 보강토 옹벽의 계측)

  • 유충식;정혁상
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.697-704
    • /
    • 2002
  • This paper presents the results of instrumentation of a two-level of soil-reinforced segmental retaining wall. Instrumentation items include the lateral wall displacements and the geogrid strains at several locations. The instrumentation is still long carried in order to examine long-term behavior. The result indicate that the upper wall has a significant effect on the behavior of the lower wall doubling the wall moved. The wall also exhibits significant post-construction movements that had ceased several months after the wall completed. The implication of the findings from this study was discussed in great detail.

  • PDF