• Title/Summary/Keyword: Reinforcement blank

Search Result 7, Processing Time 0.027 seconds

Determination of Position for Reinforcement Blank at Simultaneous Forming Analysis of Automotive Front Side Member (자동차용 프론트 사이드 멤버의 일체복합성형해석 및 보강판재의 위치결정)

  • Yoon, S.J.;Kim, H.Y.;Kim, K.H.;Kim, J.J.;Song, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.178-182
    • /
    • 2008
  • Automotive manufacturers lay their eyes on the new manufacturing technologies because of the strengthened competition. Among them, a simultaneous forming is one of the innovative forming technologies to be able to reduce production time and cost. Several parts can be simultaneous manufactured by process, while the conventional stamping demands the same number of die sets with the number of parts. In this study, the automotive front side member was manufactured by the simultaneous forming. The position and the size of initial blank were determined by forming analysis and try-outs, and the blank movement during the forming was controlled by introducing the pilot pin.

  • PDF

Determination of Shape and Position for Reinforcement Blank at Simultaneous Forming of Automotive Side Member (자동차용 사이드 멤버 일체복합성형시 보강판재의 형상 및 위치 결정)

  • Kim, H.Y.;Hwang, S.H.;Kim, K.H.;Yun, J.J.;Song, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.223-227
    • /
    • 2007
  • New forming technologies are being introduced to automotive manufacturing processes. Among them, a simultaneous forming is one of the innovative forming technologies to be able to reduce production time and cost. Several parts can be simultaneously manufactured by the process, while the conventional stamping demands the same number of die sets with the number of parts. In this study, the automotive rear floor side member was manufactured by the simultaneous forming. The position and the size of initial blank were determined by forming analyses and try-outs, and the blank movement during the forming was controlled by introducing the spotweld.

  • PDF

Formability of Thermoplastic Laminar Composite depending on the Types of- Fabric (Fabric 형태에 따른 열가소성수지 적층복합재료의 성형성)

  • Shin, Ick-Jae;Lee, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1338-1346
    • /
    • 2003
  • Three-dimensional formability of the thermoplastic laminar composite was studied according to manufacturing conditions. Five different types of the plain weave fabric were used as reinforcement with PET matrix. The square blank was made by press consolidation technique and formed in the type hemisphere. B-factor defined as the ratio of width of yarn and distance between yarns was used as the factor of formability in the type of plain weave fabric. The formability of PET/Glass fabric laminar composite was estimated in terms of forming rate and B-factor with the thickness distribution, area ratio of blank, and intra-ply shear angle. The thickness distribution across hemisphere was strongly affected by the B-factor, forming rate and blank thickness. The area ratio of blank was increased with B-factor, forming rate and blank thickness. Also, it was found that the intra-ply shear angle depends on the B-factor and forming rate.

Development of Door Inner with Tailored Blanking Technology (용접판재(Tailored Blank)를 이용한 Door Inner 개발)

  • 김관회;조원석;김헌영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.95-101
    • /
    • 1998
  • The steel door inner was manufactured via a new route, tailored blanking process, to remove hinge reinforcement parts, using thicker panels laser welded, instead. It is very important, first of all, in this process, to design optimum configuration of tailored blanks and determine the optimum process control for the stamping. Generally, it was found that the severe deformation reduction behavior during stamping in the thinner panel around weld line caused cracks and the other troubles in formability. It is our purpose of this investigation to introduce how the process control parameters, such as tailored blank configuration, size, location in the die, the position of weld line, BHF, bead configuration, work on the formability. In addition, causes of cracks and movement of weld line after forming were analyzed and compared with computer simulation work.

Optimal Design of Lightweight High Strength Door with Tailored Blank (합체박판 기술을 적용한 고장도 경량도어 최적 설계)

  • 송세일;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.174-185
    • /
    • 2002
  • The automotive industry faces many competitive challenges including weight and cost reduction to meet need for higher fuel economy. Tailored blanks offer the opportunity to decrease door weight, reduce manufacturing costs, and improve door stiffness. Optimization technology is applied to the inner panel of a door which is made by tailored blanks. The design of tailored blanks door starts from an existing door. At first, the hinge reinforcement and inner reinforcement are removed to use tailored blanks technology. The number of parts and the welding lines are determined from intuitions and the structural analysis results of the existing door. Size optimization is carried out to find thickness while the stiffness constraints are satisfied. The door hinge system is optimized using design of experiment approach. A commercial optimization software MSC/NASTRAN is utilized for the structural analysis and the optimization processes.

Analysis of Patents regarding Stabilization Technology for Steep Slope Hazards (급경사지재해 안정화기술에 대한 특허분석)

  • Song, Young-Suk;Kim, Jae-Gon
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.257-269
    • /
    • 2010
  • We analyzed patent trends regarding stabilization technology for steep slope hazards, focusing on patents applied for and registered in Korea, the USA, Japan, and Europe. The technology was classified into four groups at the second classification step: prediction techniques, instrumentation techniques, countermeasure/reinforcement/mitigation techniques, and laboratory tests. A total of 2,134 patents were selected for the final effective analysis. As a result of portfolio analysis using the correlation between the number of patents and the applicant for each patent, the Korean and USA situations were classified as belonging to the developing period, and the Japanese and European situations were classified as belonging to the ebbing period. In particular, patent activity in Korea has been enlivened by government-led research. As a result of technology analysis at the second classification step, prediction techniques arising from Japan are evaluated as a competitive power technique, and laboratory tests arising from the USA are evaluated as a competitive power technique. However, prediction techniques and laboratory tests arising from Korea are evaluated as a blank technique. According to the prediction results regarding future research and developments, a new finite element analysis method and a numerical model should be established as part of prediction techniques, as well as sensors, and hazard prediction should be developed by integrating information and equipment using IT technology as part of instrumentation techniques. In addition, improvements to existing structures for erosion control and the development of new slope-reinforcement methods are required as part of countermeasure/reinforcement/mitigation techniques, and new laboratory apparatus and methods with an optimizing structure should be developed as part of laboratory tests.

Connector Design in Press Forming Process to Prevent Frame Twisting of Metal Front Case for Mobile Phone (휴대폰용 금속 프론트 케이스의 프레스 성형공정에서 프레임의 형상오차 저감을 위한 연결부 형상설계)

  • Lee, I.K.;Lee, C.J.;Son, Y.K.;Lee, J.M.;Kim, D.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.104-109
    • /
    • 2011
  • The metal front case of a mobile phone is manufactured by press forming and welding of thin metal sheets. Twisting of the frame after the forming process is one of main obstacle for the assembly with reinforcement by welding. This study introduces a method preventing twisting of the metal front case frame in press forming. The spring-back after forming produces twisting of the frame, which leads to a low structural stiffness. To reduce twisting, connectors are required to reinforce the structural stiffness of the frame. In this study, the twisting profile is evaluated using a finite element(FE) analysis for various connector shapes. The actual connector shape is determined by minimization of the frame twisting within the tolerance of the FE-analysis. To verify the validity of the proposed blank shape, a forming experiment is performed and the twisting profile is measured using a 3D laser scanning method. The dimensional accuracy is found to be within the tolerance and in good agreement with the FE-analysis.