• Title/Summary/Keyword: Reinforcement learning

Search Result 786, Processing Time 0.032 seconds

Predicting bond strength of corroded reinforcement by deep learning

  • Tanyildizi, Harun
    • Computers and Concrete
    • /
    • v.29 no.3
    • /
    • pp.145-159
    • /
    • 2022
  • In this study, the extreme learning machine and deep learning models were devised to estimate the bond strength of corroded reinforcement in concrete. The six inputs and one output were used in this study. The compressive strength, concrete cover, bond length, steel type, diameter of steel bar, and corrosion level were selected as the input variables. The results of bond strength were used as the output variable. Moreover, the Analysis of variance (Anova) was used to find the effect of input variables on the bond strength of corroded reinforcement in concrete. The prediction results were compared to the experimental results and each other. The extreme learning machine and the deep learning models estimated the bond strength by 99.81% and 99.99% accuracy, respectively. This study found that the deep learning model can be estimated the bond strength of corroded reinforcement with higher accuracy than the extreme learning machine model. The Anova results found that the corrosion level was found to be the input variable that most affects the bond strength of corroded reinforcement in concrete.

Fault-tolerant control system for once-through steam generator based on reinforcement learning algorithm

  • Li, Cheng;Yu, Ren;Yu, Wenmin;Wang, Tianshu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3283-3292
    • /
    • 2022
  • Based on the Deep Q-Network(DQN) algorithm of reinforcement learning, an active fault-tolerance method with incremental action is proposed for the control system with sensor faults of the once-through steam generator(OTSG). In this paper, we first establish the OTSG model as the interaction environment for the agent of reinforcement learning. The reinforcement learning agent chooses an action according to the system state obtained by the pressure sensor, the incremental action can gradually approach the optimal strategy for the current fault, and then the agent updates the network by different rewards obtained in the interaction process. In this way, we can transform the active fault tolerant control process of the OTSG to the reinforcement learning agent's decision-making process. The comparison experiments compared with the traditional reinforcement learning algorithm(RL) with fixed strategies show that the active fault-tolerant controller designed in this paper can accurately and rapidly control under sensor faults so that the pressure of the OTSG can be stabilized near the set-point value, and the OTSG can run normally and stably.

A Survey on Deep Reinforcement Learning Libraries (심층강화학습 라이브러리 기술동향)

  • Shin, S.J.;Cho, C.L.;Jeon, H.S.;Yoon, S.H.;Kim, T.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.87-99
    • /
    • 2019
  • Reinforcement learning is a type of machine learning paradigm that forces agents to repeat the observation-action-reward process to assess and predict the values of possible future action sequences. This allows the agents to incrementally reinforce the desired behavior for a given observation. Thanks to the recent advancements of deep learning, reinforcement learning has evolved into deep reinforcement learning that introduces promising results in various control and optimization domains, such as games, robotics, autonomous vehicles, computing, industrial control, and so on. In addition to this trend, a number of programming libraries have been developed for importing deep reinforcement learning into a variety of applications. In this article, we briefly review and summarize 10 representative deep reinforcement learning libraries and compare them from a development project perspective.

Reinforcement learning for multi mobile robot control in the dynamic environments (동적 환경에서 강화학습을 이용한 다중이동로봇의 제어)

  • 김도윤;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.944-947
    • /
    • 1996
  • Realization of autonomous agents that organize their own internal structure in order to behave adequately with respect to their goals and the world is the ultimate goal of AI and Robotics. Reinforcement learning gas recently been receiving increased attention as a method for robot learning with little or no a priori knowledge and higher capability of reactive and adaptive behaviors. In this paper, we present a method of reinforcement learning by which a multi robots learn to move to goal. The results of computer simulations are given.

  • PDF

Dynamic Action Space Handling Method for Reinforcement Learning Models

  • Woo, Sangchul;Sung, Yunsick
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1223-1230
    • /
    • 2020
  • Recently, extensive studies have been conducted to apply deep learning to reinforcement learning to solve the state-space problem. If the state-space problem was solved, reinforcement learning would become applicable in various fields. For example, users can utilize dance-tutorial systems to learn how to dance by watching and imitating a virtual instructor. The instructor can perform the optimal dance to the music, to which reinforcement learning is applied. In this study, we propose a method of reinforcement learning in which the action space is dynamically adjusted. Because actions that are not performed or are unlikely to be optimal are not learned, and the state space is not allocated, the learning time can be shortened, and the state space can be reduced. In an experiment, the proposed method shows results similar to those of traditional Q-learning even when the state space of the proposed method is reduced to approximately 0.33% of that of Q-learning. Consequently, the proposed method reduces the cost and time required for learning. Traditional Q-learning requires 6 million state spaces for learning 100,000 times. In contrast, the proposed method requires only 20,000 state spaces. A higher winning rate can be achieved in a shorter period of time by retrieving 20,000 state spaces instead of 6 million.

Traffic-based reinforcement learning with neural network algorithm in fog computing environment

  • Jung, Tae-Won;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.144-150
    • /
    • 2020
  • Reinforcement learning is a technology that can present successful and creative solutions in many areas. This reinforcement learning technology was used to deploy containers from cloud servers to fog servers to help them learn the maximization of rewards due to reduced traffic. Leveraging reinforcement learning is aimed at predicting traffic in the network and optimizing traffic-based fog computing network environment for cloud, fog and clients. The reinforcement learning system collects network traffic data from the fog server and IoT. Reinforcement learning neural networks, which use collected traffic data as input values, can consist of Long Short-Term Memory (LSTM) neural networks in network environments that support fog computing, to learn time series data and to predict optimized traffic. Description of the input and output values of the traffic-based reinforcement learning LSTM neural network, the composition of the node, the activation function and error function of the hidden layer, the overfitting method, and the optimization algorithm.

Topic directed Web Spidering using Reinforcement Learning (강화학습을 이용한 주제별 웹 탐색)

  • Lim, Soo-Yeon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.395-399
    • /
    • 2005
  • In this paper, we presents HIGH-Q learning algorithm with reinforcement learning for more fast and exact topic-directed web spidering. The purpose of reinforcement learning is to maximize rewards from environment, an reinforcement learning agents learn by interacting with external environment through trial and error. We performed experiments that compared the proposed method using reinforcement learning with breath first search method for searching the web pages. In result, reinforcement learning method using future discounted rewards searched a small number of pages to find result pages.

Mapless Navigation with Distributional Reinforcement Learning (분포형 강화학습을 활용한 맵리스 네비게이션)

  • Van Manh Tran;Gon-Woo Kim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.92-97
    • /
    • 2024
  • This paper provides a study of distributional perspective on reinforcement learning for application in mobile robot navigation. Mapless navigation algorithms based on deep reinforcement learning are proven to promising performance and high applicability. The trial-and-error simulations in virtual environments are encouraged to implement autonomous navigation due to expensive real-life interactions. Nevertheless, applying the deep reinforcement learning model in real tasks is challenging due to dissimilar data collection between virtual simulation and the physical world, leading to high-risk manners and high collision rate. In this paper, we present distributional reinforcement learning architecture for mapless navigation of mobile robot that adapt the uncertainty of environmental change. The experimental results indicate the superior performance of distributional soft actor critic compared to conventional methods.

Enhanced Machine Learning Algorithms: Deep Learning, Reinforcement Learning, and Q-Learning

  • Park, Ji Su;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1001-1007
    • /
    • 2020
  • In recent years, machine learning algorithms are continuously being used and expanded in various fields, such as facial recognition, signal processing, personal authentication, and stock prediction. In particular, various algorithms, such as deep learning, reinforcement learning, and Q-learning, are continuously being improved. Among these algorithms, the expansion of deep learning is rapidly changing. Nevertheless, machine learning algorithms have not yet been applied in several fields, such as personal authentication technology. This technology is an essential tool in the digital information era, walking recognition technology as promising biometrics, and technology for solving state-space problems. Therefore, algorithm technologies of deep learning, reinforcement learning, and Q-learning, which are typical machine learning algorithms in various fields, such as agricultural technology, personal authentication, wireless network, game, biometric recognition, and image recognition, are being improved and expanded in this paper.

Real-Time Path Planning for Mobile Robots Using Q-Learning (Q-learning을 이용한 이동 로봇의 실시간 경로 계획)

  • Kim, Ho-Won;Lee, Won-Chang
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.991-997
    • /
    • 2020
  • Reinforcement learning has been applied mainly in sequential decision-making problems. Especially in recent years, reinforcement learning combined with neural networks has brought successful results in previously unsolved fields. However, reinforcement learning using deep neural networks has the disadvantage that it is too complex for immediate use in the field. In this paper, we implemented path planning algorithm for mobile robots using Q-learning, one of the easy-to-learn reinforcement learning algorithms. We used real-time Q-learning to update the Q-table in real-time since the Q-learning method of generating Q-tables in advance has obvious limitations. By adjusting the exploration strategy, we were able to obtain the learning speed required for real-time Q-learning. Finally, we compared the performance of real-time Q-learning and DQN.