• Title/Summary/Keyword: Relative Fiber Length

Search Result 56, Processing Time 0.026 seconds

Investigation of the liquefaction potential of fiber-reinforced sand

  • Sonmezer, Yetis Bulent
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.503-513
    • /
    • 2019
  • In the present, the liquefaction potential of fiber-reinforced sandy soils was investigated through the energy-based approach by conducting a series of strain-controlled cyclic simple shear tests. In the tests, the effects of the fiber properties, such as the fiber content, fiber length, relative density and effective stress, and the test parameters on sandy soil improvement were investigated. The results indicated that the fiber inclusion yields to higher cumulative liquefaction energy values compared to the unreinforced (plain) ground by increasing the number of cycles and shear strength needed for the liquefaction of the soil. This result reveals that the fiber inclusion increases the resistance of the soil to liquefaction. However, the increase in the fiber content was determined to be more effective on the test results compared to the fiber length. Furthermore, the increase in the relative density of the soil increases the efficiency of the fibers on soil strengthening.

Nondestructive Evaluation of Fiber Waviness in Thick Composites by Ultrasonics (초음파를 이용한 두꺼운 복합재료의 보강섬유 굴곡 평가)

  • 장필성;전흥재
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.258-263
    • /
    • 1999
  • In this study, the numerical and experimental investigations were conducted to understand ultrasonic wave propagation and to evaluate the degree of fiber waviness in thick composites nondestructively. The path, energy and traveling time of insonified wave were predicted by adopting the ray and plane wave theories. In the analysis, the composites were assumed to have continuous fiber with sinusoidal waviness in a matrix and were modeled as stacks of infinitesimally short length off-axis elements with varying fiber orientation along the length direction. From the experiments on the specially fabricated thick composite specimens with various degrees of uniform fiber waviness, the energy distributions of received wave were obtain for the various positions of transmitter. It was observed that the energy of wave was converged to the adjacent peaks of fiber waviness. The location where maximum energy of wave was detected from the experiments showed good agreement with the location obtained from theoretical predictions. Finally, the test procedure was Proposed to evaluate fiber waviness in thick composites by considering the energy of wave and relative distance between transmitter and receiver.

  • PDF

Interfacial bond properties and comparison of various interfacial bond stress calculation methods of steel and steel fiber reinforced concrete

  • Wu, Kai;Zheng, Huiming;Lin, Junfu;Li, Hui;Zhao, Jixiang
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.515-531
    • /
    • 2020
  • Due to the construction difficulties of steel reinforced concrete (SRC), a new composite structure of steel and steel fiber reinforced concrete (SSFRC) is proposed for solving construction problems of SRC. This paper aims to investigate the bond properties and composition of interfacial bond stress between steel and steel fiber reinforced concrete. Considering the design parameters of section type, steel fiber ratio, interface embedded length and concrete cover thickness, a total of 36 specimens were fabricated. The bond properties of specimens were studied, and three different methods of calculating interfacial bond stress were analyzed. The results show: relative slip first occurs at the free end; Bearing capacity of specimens increases with the increase of interface embedded length. While the larger interface embedded length is, the smaller the average bond strength is. The average bond strength increases with the increase of concrete cover thickness and steel fiber ratio. And calculation method 3 proposed in this paper can not only reasonably explain the hardening stage after the loading end curve yielding, but also can be applied to steel reinforced high-strength concrete (SRHC) and steel reinforced recycled coarse aggregate concrete (SRRAC).

Theoretical Analysis and Optimization of Extrinsic Fabry-Perot Interferometer Optical-fiber Humidity-sensor Structures

  • Yin, Xiao Lei;Wang, Ning;Yu, Xiao Dan;Li, Yu Hao;Zhang, Bo;Li, Dai Lin
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.652-659
    • /
    • 2021
  • The theoretical analysis and optimization of extrinsic Fabry-Perot interferometer (EFPI) opticalfiber humidity sensors are deeply investigated. For a typical dual-cavity structure composed of an optical fiber and a humidity-sensitive membrane (HSM), the changes in refractive index (RI) and initial length are discussed for polymer materials and porous oxide materials when relative humidity (RH) increases. The typical interference spectrum is simulated at different RH using MATLAB. The spectral change caused by changing HSM RI and initial length are simulated simutineously, showing different influences on humidity response. To deeply investigate the influence on RH sensitivity, the typical response sensitivity curves for different HSM lengths and air-cavity lengths are simulated. The results show that the HSM is the vital factor. Short HSM length can improve the sensitivity, but for HSM RI and length the influences on sensitivity are opposite, because of the opposite spectral-shift trend. Deep discussion and an optimization method are provided to solve this problem. According to analysis, an opaque HSM is helpful to improve sensitivity. Furthermore, if using an opaque HSM, a short air cavity and long HSM length can improve the sensor's sensitivity These results provide deep understanding and some ideas for designing and optimizing highly sensitive EFPI fiber humidity sensors.

Classification of the Length of Ceramic Fibers by Settling Process (중력침강에 의한 세라믹 섬유의 길이분류)

  • 김제균;최광훈;오승진;정윤중;강대갑;이재춘
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.161-170
    • /
    • 1994
  • For the preparation of short ceramic fibers of which average length might be in accordance with the opening size of sieve, e.g., 150${\mu}{\textrm}{m}$ or 300${\mu}{\textrm}{m}$, bulk fibers were grounded on sieve screen by applying both compressing and shearing force, and passed through the sieve screen. The grounded fibers were subjected to gravitational settling processes. The classified fibers were observed by scanning electron microscopy and the length of each fiber was measured to correlate the average length with the opening size of the sieve used for grinding bulk fibers. Theoretical analysis show that a free settling technique is ineffective for the classification of fibers by length compared with that of particles. The average lengths of classified fibers estimated by scanning electron microscopy were in good agreement with those obtained by relative packing volume of the fibers. Accordingly, it is confirmed that average fiber lengths can be determined from bulk volume data without photographing, counting and averaging results for hundreds of fibers.

  • PDF

Effect of Fiber Orientation on the Tensile Strength in Long-Fiber Reinforced Polymeric Composites (장섬유강화 고분자 복합재료에서 인장강도에 미치는 섬유배향의 영향)

  • Lee, Dong-Gi;Sim, Jae-Ki;Han, Gil-Young;Kim, Hyuk;Kim, Jin-Woo;Lee, Jung-Ju
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.55-60
    • /
    • 2003
  • Case that long-fiber reinforced polymeric composites of fiber orientation situation of a direction state is J=1 that is direction of tensile strength of another state appeared highest. And theoretical tensile strength value of long-fiber reinforced polymeric composites board of fiber orientation situation of a direction state appeared similarly with tensile strength value that long-fiber reinforced polymeric composites board of fiber orientation situation of a direction state. Also, than case that efficiency of fiber orientation situation of long-fiber reinforced polymeric composites is J=1 in it is J=0.1 of fiber orientation situation effect of long-fiber reinforced polymeric composites about 60% high appear.

  • PDF

A study of glass and carbon fibers in FRAC utilizing machine learning approach

  • Ankita Upadhya;M. S. Thakur;Nitisha Sharma;Fadi H. Almohammed;Parveen Sihag
    • Advances in materials Research
    • /
    • v.13 no.1
    • /
    • pp.63-86
    • /
    • 2024
  • Asphalt concrete (AC), is a mixture of bitumen and aggregates, which is very sensitive in the design of flexible pavement. In this study, the Marshall stability of the glass and carbon fiber bituminous concrete was predicted by using Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and M5P Tree machine learning algorithms. To predict the Marshall stability, nine inputs parameters i.e., Bitumen, Glass and Carbon fibers mixed in 100:0, 75:25, 50:50, 25:75, 0:100 percentage (designated as 100GF:0CF, 75GF:25CF, 50GF:50 CF, 25GF:75CF, 0GF:100CF), Bitumen grade (VG), Fiber length (FL), and Fiber diameter (FD) were utilized from the experimental and literary data. Seven statistical indices i.e., coefficient of correlation (CC), mean absolute error (MAE), root mean squared error (RMSE), relative absolute error (RAE), root relative squared error (RRSE), Scattering index (SI), and BIAS were applied to assess the effectiveness of the developed models. According to the performance evaluation results, Artificial neural network (ANN) was outperforming among other models with CC values as 0.9147 and 0.8648, MAE values as 1.3757 and 1.978, RMSE values as 1.843 and 2.6951, RAE values as 39.88 and 49.31, RRSE values as 40.62 and 50.50, SI values as 0.1379 and 0.2027 and BIAS value as -0.1 290 and -0.2357 in training and testing stage respectively. The Taylor diagram (testing stage) also confirmed that the ANN-based model outperforms the other models. Results of sensitivity analysis showed that the fiber length is the most influential in all nine input parameters whereas the fiber combination of 25GF:75CF was the most effective among all the fiber mixes in Marshall stability.

Optical-fiber Electronic Speckle Pattern Interferometry for Quantitative Measurement of Defects on Aluminum Liners in Composite Pressure Vessels

  • Kim, Seong Jong;Kang, Young June;Choi, Nak-Jung
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.50-56
    • /
    • 2013
  • Optical-fiber electronic speckle pattern interferometry (ESPI) is a non-contact, non-destructive examination technique with the advantages of rapid measurement, high accuracy, and full-field measurement. The optical-fiber ESPI system used in this study was compact and portable with the advantages of easy set-up and signal acquisition. By suitably configuring the optical-fiber ESPI system, producing an image signal in a charge-coupled device camera, and periodically modulating beam phases, we obtained phase information from the speckle pattern using a four-step phase shifting algorithm. Moreover, we compared the actual defect size with that of interference fringes which appeared on a screen after calculating the pixel value according to the distance between the object and the CCD camera. Conventional methods of measuring defects are time-consuming and resource-intensive because the estimated values are relative. However, our simple method could quantitatively estimate the defect length by carrying out numerical analysis for obtaining values on the X-axis in a line profile. The results showed reliable values for average error rates and a decrease in the error rate with increasing defect length or pressure.

Effect of Fiber Content and Fiber Orientation on the Tensile Strength in Glass Mat Reinforced Thermoplastic Sheet (GMT Sheet에서 섬유함유율 및 섬유배향이 인장강도에 미치는 영향)

  • Lee, Jung-Ju;Lee, Dong-Gi;Sim, Jae-Ki;Jo, Seon-Hyung;Kim, Jin-Woo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.186-191
    • /
    • 2004
  • we can say that the increasing range of the value of GMT Sheet's tensile strength in the direction of fiber orientation is getting wider as the fiber content increases. It shows that the value of GMT Sheet's tensile strength in the direction of fiber orientation 90 is similar with the value of pp's intensity when fiber orientation function is J= 0.7, regardless of the fiber content. Tensile strength of GMT Sheet is affected by the fiber orientation distribution more than by the fiber content.

  • PDF

Effect of Knit Fabric Constituent Characteristics on Preference (니트 소재 구성특성이 선호도에 미치는 영향)

  • Roh, Eui-Kyung;Kim, Seong-Hun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.4
    • /
    • pp.651-658
    • /
    • 2008
  • Conjoint analysis estimates how much each of the attributes is valued on the basis of the choices consumers make among product concepts that are varied in systematic ways. The purposes of this research were to evaluate the relative importance of each fabric constituent characteristic for the consumer's utility or preference, to compare with the relative importance between the trained and the untrained panelists, and to identify the combinations of the constituent characteristic of knit fabric which offer consumers greater utility. Conjoint analysis was conducted using data taken from 54 trained and 54 untrained panelists, who rated preference for 12 different knit fabrics. The stitch length had a greater effect on knit fabric preference than the mixture ratio of fiber. There was no difference on effect of knit constituent characteristics for preference between the trained and the untrained panelists. Total, trained and untrained group preferred a knit fabric that had a higher acrylic mixture ratio and a short stitch length.