• Title/Summary/Keyword: Reliability Growth Activity

Search Result 24, Processing Time 0.027 seconds

Practical Reliability Growth Management for RAM Growth Monitoring (RAM 성장모니터링을 위한 실용적인 신뢰성 성장관리)

  • Jung Won
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.258-263
    • /
    • 2005
  • The purpose of this research is to present a practical method for efficiently monitoring a reliability growth process using AMSAA(Army Materiel Systems Analysis Activity) reliability growth model. The presented method is viable for identifying failure modes, incorporating design changes and monitoring reliability progress on an on-going basis during the early stages of a product development program. According to the Application Guide for EN 50126(RAM part for Rolling Stock), reliability growth monitoring is essential part of the main tasks of design phase in RAM growth monitoring. Implementation of reliability growth management program will provide very useful information on concept selection, product/process reliability, and cost effectiveness without too much time, money and engineering effort being spent on the development of failure suspect parts.

  • PDF

Practical Application of AMSAA Model in the Product Development Process (제품개발 과정에서 AMSAA 모델의 실용적 활용방법)

  • Jung, Won;Kim, Jun-Hong
    • IE interfaces
    • /
    • v.19 no.1
    • /
    • pp.19-25
    • /
    • 2006
  • In the development process, the objective of a reliability growth program is to track the increase in system reliability, and determine as early as possible whether or not the system reliability is growing at a sufficient rate to meet the required goal and allocate available resources accordingly. Implementation of this kind of program will provide very useful information on concept selection, product/process reliability, and cost effectiveness without too much time, money and engineering effort being spent on the development of failure suspect parts. The purpose of this research is to present a practical method for efficiently monitoring a reliability growth test process using AMSAA(Army Materiel Systems Analysis Activity) reliability growth model. The presented growth management is a viable method for identifying failure modes, incorporating design changes and monitoring reliability progress on an on-going basis during the early stages of a product development program.

Developing the Accurate Method of Test Data Assessment with Changing Reliability Growth Rate and the Effect Evaluation for Complex and Repairable Products

  • So, Young-Kug;Ryu, Byeong-Jin
    • Journal of Applied Reliability
    • /
    • v.15 no.2
    • /
    • pp.90-100
    • /
    • 2015
  • Reliability growth rate (or reliability growth curve slope) have the two cases of trend as a constant or changing one during the reliability growth testing. The changing case is very common situation. The reasons of reliability growth rate changing are that the failures to follow the NHPP (None-Homogeneous Poisson Process), and the solutions implemented during test to break out other problems or not to take out all of the root cause permanently. If the changing were big, the "Goodness of Fit (GOF)" of reliability growth curve to test data would be very low and then reduce the accuracy of assessing result with test data. In this research, we are using Duane model and AMSAA model for assessing test data and projecting the reliability level of complex and repairable system as like construction equipment and vehicle. In case of no changing in reliability growth rate, it is reasonable for reliability engineer to implement the original Duane model (1964) and Crow-AMSAA model (1975) for the assessment and projection activity. However, in case of reliability growth rate changing, it is necessary to find the method to increase the "GOF" of reliability growth curves to test data. To increase GOF of reliability growth curves, it is necessary to find the proper parameter calculation method of interesting reliability growth models that are applicable to the situation of reliability growth rate changing. Since the Duane and AMSAA models have a characteristic to get more strong influence from the initial test (or failure) data than the latest one, the both models have a limitation to contain the latest test data information that is more important and better to assess test data in view of accuracy, especially when the reliability growth rate changing. The main objective of this research is to find the parameter calculation method to reflect the latest test data in the case of reliability growth rate changing. According to my experience in vehicle and construction equipment developments over 18 years, over the 90% in the total development cases are with such changing during the developing test. The objective of this research was to develop the newly assessing method and the process for GOF level increasing in case of reliability growth rate changing that would contribute to achieve more accurate assessing and projecting result. We also developed the new evaluation method for GOF that are applicable to the both models as Duane and AMSAA, so it is possible to compare it between models and check the effectiveness of new parameter calculation methods in any interesting situation. These research results can reduce the decision error for development process and business control with the accurately assessing and projecting result.

A Comparative Study on the Reliability Growth Enhancement Activities Using "ANALYSIS" and "TEST" through FMECA and Highly Accelerated Life Tests (신뢰성 성장 강화를 위한 Analysis 방법(FMECA)과 Test(초가속수명시험-HALT) 비교 연구)

  • Shin, Sang-Hee;Jung, Joo-Hyun;Kang, Tae-Ho;Lee, Jong-Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.406-418
    • /
    • 2020
  • When developing weapons systems, it is important to implement the functions and performance of equipment suitable for development purposes, but it is very important to ensure that the equipment is capable of operating without any vacuum with reliability after development. Therefore, various activities are carried out to enhance reliability of equipment. Reliability is enhanced by using high-specification parts in development, reliability verification through analysis, and testing using development prototypes to reinforce and improve the parts that are lacking in equipment. However, recently, development schedules are shortened due to rapidly changing external conditions and technologies, and there are cases where sufficient reliability growth activities were not carried out due to problems such as cost. Examples are projects that perform reliability activities only in analytical methods (reliability, FMECA). In this paper, analyzing and testing methods for analysis and testing were carried out on the same equipment through FMECA and super-accelerated life test, the contents of reliability growth activity were derived, the results of design change/review were accordingly compared, the differences between the two methods were analyzed, and measures were proposed to strengthen reliable growth activities. It was concluded that reliable growth activities through analysis from the beginning of development and reliable growth activities through testing should be carried out at the completion of initial prototype production.

An evolution of reliability of a large switching software composed of functional blocks (기능 블록으로 구성된 대형 교환 소프트웨어의 신뢰도 성장)

  • 유재연;이재기
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.1
    • /
    • pp.29-38
    • /
    • 1998
  • We summarize, in this paper, that we have learned from the slftwar reliability analysis of a large switching software composed of functional blocks which form slotware units. To determine the time of management activity related to sopftware reliability growth, we review the process of detection and correction of software failures. Also we apply the two softwre reliability frowth model, Goel-Okumoto and S-shaped model, to estimate the global software reliability growth to a set of failure found during period of the system test. The analysis methods and results can be applied to other large software development projects.

  • PDF

Development and Application of Teacher's Evaluation Standard for Environment and Green Growth Project Activity (환경과 녹색성장 프로젝트 활동에 따른 교사용 평가 기준 개발과 적용)

  • Lee, Sung-Hee;Choi, Sun-Young;Kang, Ho-Kam
    • Hwankyungkyoyuk
    • /
    • v.24 no.4
    • /
    • pp.32-40
    • /
    • 2011
  • The purpose of this study was to develop an evaluation standard by which teachers in charge of environment and green growth education could conduct a project activity and examine its applicability. The results were as follows; First, 26 evaluation items were developed through interviews with teachers and expert meetings. These categories were base on 'Theme', 'Planning', 'Result' and 'Presentation', and 'Evaluation' of the project. Second, a reliability test showed that internal consistency of the items was currently high(Cronbach's alpha .8709). To examine the content validity, the project activity was evaluated by 5 different teachers, and the result showed that the evaluation standard developed in this study was a very effective tool for the teachers to do project learning. Third, from the 2011 revised national curriculum, the subject 'Environment' in middle schools would be renamed as 'Environment and Green Growth'. Also, environment project activity would be introduced in the middle school. Therefore, this study had a significant importance in the fact that it provided teachers and students with a practical evaluation standard for the environment and green growth project activity.

  • PDF

Evaluating Reliability Growth in the New Product Development Stage (신제품 개발단계에서의 신뢰성 성장 평가)

  • 정원
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.157-163
    • /
    • 2005
  • 신뢰성성장시험관리는 제품개발프로그램의 초기단계에서 고장모드를 확인하고, 이를 개선 또는 제거하기 위해 설계를 변경하고, 그 결과 진행되는 신뢰성이 향상되는 변화를 추적할 수 있는 실용적인 방법이다. 본 연구의 목적은 AMSAA(Army Materiel Systems Analysis Activity)모델을 이용하여 신뢰성 성장을 계획하고 평가할 수 있는 실용적인 방법을 제시하는데 있다. 시험-개선 과정을 통하여 성장하는 신뢰성 수준의 변화에 대한 추적과 예측 가이드라인을 제시함으로써 현장에서 활용할 수 있는 방법을 보여준다.

  • PDF

The Software Reliability Growth Models for Software Life-Cycle Based on NHPP

  • Nam, Kyung-H.;Kim, Do-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.3
    • /
    • pp.573-584
    • /
    • 2010
  • This paper considers the differences in the software execution environments in the testing phase and the operational phase to determine the optimal release time and warranty period of software systems. We formulate equations for the total expected software cost until the end of the software life cycle based on the NHPP. In addition, we derive the optimal release time that minimizes the total expected software cost for an imperfect debugging software reliability model. Finally, we analyze the sensitivity of the optimal testing and maintenance design related to variation of the cost model parameters based on the fault data observed in the actual testing process, and discuss the quantitative properties of the proposed model.

A Reliability Prediction Method for Weapon Systems using Support Vector Regression (지지벡터회귀분석을 이용한 무기체계 신뢰도 예측기법)

  • Na, Il-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.675-682
    • /
    • 2013
  • Reliability analysis and prediction of next failure time is critical to sustain weapon systems, concerning scheduled maintenance, spare parts replacement and maintenance interventions, etc. Since 1981, many methodology derived from various probabilistic and statistical theories has been suggested to do that activity. Nowadays, many A.I. tools have been used to support these predictions. Support Vector Regression(SVR) is a nonlinear regression technique extended from support vector machine. SVR can fit data flexibly and it has a wide variety of applications. This paper utilizes SVM and SVR with combining time series to predict the next failure time based on historical failure data. A numerical case using failure data from the military equipment is presented to demonstrate the performance of the proposed approach. Finally, the proposed approach is proved meaningful to predict next failure point and to estimate instantaneous failure rate and MTBF.

Hologram Quantitative Structure-Activity Relationships Study of N-Phenyl-N'-{4-(4-quinolyloxy)phenyl} Urea Derivatives as VEGFR-2 Tyrosine Kinase Inhibitors

  • Keretsu, Seketoulie;Balasubramanian, Pavithra K.;Bhujbal, Swapnil P.;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.10 no.3
    • /
    • pp.141-147
    • /
    • 2017
  • Vascular endothelial growth factor (VEGF) is an important signaling protein involved in angiogenesis, which is the formation of new blood vessels from pre-existing vessels. Consequently, blocking of the vascular endothelial growth factor receptor (VEGFR-2) by small molecule inhibitors leads to the inhibition of cancer induced angiogenesis. In this study, we performed a two dimensional quantitative structure activity relationship (2D-QSAR) study of 38 N-Phenyl-N'-{4-(4-quinolyloxy) phenyl} urea derivatives as VEGFR-2 inhibitors based on hologram quantitative structure-activity (HQSAR). The model developed showed reasonable $q^2=0.521$ and $r^2=0.932$ values indicating good predictive ability and reliability. The atomic contribution map analysis of most active compound (compound 7) indicates that hydrogen and oxygen atoms in the side chain of ring A and oxygen atom in side chain of ring C contributes positively to the activity of the compounds. The HQSAR model developed and the atomic contribution map can serve as a guideline in designing new compounds for VEGFR-2 inhibition.