• Title/Summary/Keyword: Reliability Target

Search Result 811, Processing Time 0.025 seconds

A Study for Reliability Target Setting Considering Warranty Cost and Reliability Analysis Result of Process Controller in Nuclear Power Plant (원자력 발전소용 공정 제어기의 보증 비용을 고려한 신뢰도 목표치 설정과 신뢰도 분석 결과에 대한 연구)

  • Kim, Gun Myung
    • Journal of Applied Reliability
    • /
    • v.15 no.3
    • /
    • pp.145-148
    • /
    • 2015
  • The products to meet the requirement of are installed in nuclear power plant and the reliability target should be provided in the requirement. However, it is not easy to set a reliability target using quantitative analysis. The objective of this paper is to propose a method of reliability target setting considered warranty cost for process controller and then compare a reliability target with reliability analysis result.

Developing the Optimized Method of Reliability-Growth Target Setting for Complex and Repairable Products from Business View

  • So, Young-Kug;Jeon, Young-Rok;Ryu, Byeong-Jin
    • Journal of Applied Reliability
    • /
    • v.15 no.4
    • /
    • pp.248-255
    • /
    • 2015
  • Purpose : The purpose of this research is to develop the optimized method and process in the reliability-growth target setting, especially for complex and repairable system (or products) such as vehicle and airplane, construction equipment. Method : A reliability-growth test plan specifies a scenario to achieve the planned reliability value (or reliability target). The major elements in test planning are reliability-growth starting time and reliability level at that time, reliability-growth rate and reliability-growth target. All of them except a reliability target can be referred to the previous development data and reference researches. The reliability target level is directly influencing to test period (or time) which is related to test and warranty cost together. There are a few researches about the reliability target setting method and but showing the limitations to consider the views of engineering, business and customer together. There is no research how to handle the target setting process in detail. Result : We develop the optimized method and systematic process in reliability target setting with considering such views. This research also establish the new concept as production capability which means company (or supplier) capability to product its products. Conclusion : In this research result, we apply the new method to a few projects and can set the reasonable test planning. The developing results is showing the good balance between the developing cost and warranty cost at market.

Application of Reliability Growth Management for Construction Equipment Development Process (건설장비 개발과정에서 신뢰성성장관리 적용방법에 대한 연구)

  • So, Young-Kug;Jeon, Young-Rok;Ryu, Byeong-Jin
    • Journal of Applied Reliability
    • /
    • v.13 no.3
    • /
    • pp.175-190
    • /
    • 2013
  • This study considers reliability growth management as the excellent method for construction equipment development with the effect on decreasing COPQ(Cost of Poor Quality Cost) of new products. MIL-HDBK-189A(1981) and RADC-TR-84-20(1984) standards provide a general concept of reliability growth management including to reliability growth test, models and FRACAS(Failure Reporting and Corrective Action System). There is no study how to apply reliability growth management to construction equipment(or machine) development. This paper propose the method to apply it to construction equipment development process from the reliability target setting for developing products to launching them at market. It is expecially showing how to set target reliability for new developing equipment and the development risk to reach the reliability target in detail.

Reliability Design Using FMEA for Pressure Control Regulator of Aircraft Fuel System (항공기용 연료계통 압력조절밸브의 FMEA를 적용한 신뢰성 설계)

  • Bae, Bo-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.24-28
    • /
    • 2009
  • The reliability assessment is performed for Pressure Control Regulator of Aircraft Fuel System using reliability procedure which consists of the reliability analysis and the Failure Modes and Effects Analysis(FMEA). The target reliability as MTBF(Mean Time Between Failure) is set to 5000hr. During the reliability analysis process, the system is categorized by Work Breakdown Structure(WBS) up to level 3, and a reliability structure is defined by schematics of the system. Since the components and parts that have been collected through EPRD/NPRD. The predicted reliability to meet mission requirements and operating conditions is estimated as 4375.9hr. To accomplish the target reliability, the components and parts with high RPN have been identified and changed by analyzing the potential failure modes and effects. By changing the configuration design of components and parts with high-risk, the design is satisfied target reliability.

  • PDF

RELIABILITY-BASED DESIGN OPTIMIZATION OF AUTOMOTIVE SUSPENSION SYSTEMS

  • Chun, H.H.;Kwon, S.J.;Tak, T.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.713-722
    • /
    • 2007
  • Design variables for suspension systems cannot always be realized in the actual suspension systems due to tolerances in manufacturing and assembly processes. In order to deal with these tolerances, design variables associated with kinematic configuration and compliance characteristics of suspensions are treated as random variables. The reliability of a design target with respect to a design variable is defined as the probability that the design target is in the acceptable design range for all possible values of the design variable. To compute reliability, the limit state, which is the boundary between the acceptable and unacceptable design, is expressed mathematically by a limit state function with value greater than 0 for acceptable design, and less than 0 for unacceptable design. Through reliability analysis, the acceptable range of design variables that satisfy a reliability target is specified. Furthermore, through sensitivity analysis, a general procedure for optimization of the design target with respect to the design variables has been established.

Reliability analysis of circular tunnel with consideration of the strength limit state

  • Ghasemi, Seyed Hooman;Nowak, Andrzej S.
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.879-888
    • /
    • 2018
  • Probability-based design codes have been developed to sufficiently confirm the safety level of structures. One of the most acceptable probability-based approaches is Load Resistance Factor Design (LRFD), which measures the safety level of the structures in terms of the reliability index. The main contribution of this paper is to calibrate the load and resistance factors of the design code for tunnels. The load and resistance factors are calculated using the available statistical models and probability-based procedures. The major steps include selection of representative structures, consideration of the limit state functions, calculation of reliability for the selected structures, selection of the target reliability index and calculation of load factors and resistance factors. The load and resistance models are reviewed. Statistical models of resistance (load carrying capacity) are summarized for strength limit state in bending, shear and compression. The reliability indices are calculated for several segments of a selected circular tunnel designed according to the tunnel manual report (Tunnel Manual). The novelty of this paper is the selection of the target reliability. In doing so, the uniform spectrum of reliability indices is proposed based on the probability paper. The final recommendation is proposed based on the closeness to the target reliability index.

Setting the Service Reliability Target for Meeting the Punctuality Requirement of the Railroad System (철도시스템 정시성 요구조건을 만족하기 위한 서비스 신뢰도 목표값 설정)

  • Kim, Jong-Woon;Park, Jun-Seo;Chung, In-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.6-10
    • /
    • 2011
  • This article deals with a problem of setting reliability targets of the railroad systems where the punctuality target is given to the operator and a penalty is imposed for the year when the target is not met. The operator should set the reliability targets of the railroad system and sub-systems because the reliability affects the expected number of years when the penalty is imposed. This paper presents a procedure for setting the service reliability target and equations to calculate the expected number of years when the penalty is imposed and the probability that the operator should pay the penalty per year according to the mean kilometer between service failures of the railroad system and sub-systems.

Target Reliability Index of Single Gravel Compaction Piles for Limit State Design (한계상태설계를 위한 단일 쇄석다짐말뚝의 목표신뢰도지수)

  • You, Youngkwon;Lim, Heuidae;Park, Joonmo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.5-15
    • /
    • 2014
  • Target reliability index in the limit state design indicated the safety margin and it is important to determine the partial factor. To determine the target reliability index which is needed in the limit state design, the six design and construction case histories of gravel compaction piles (GCP) were investigated. The limit state functions were defined by bulging failure for the major failure mode of GCP. The reliability analysis were performed using the first order reliability method (FORM) and the reliability index was calculated for each ultimate bearing capacity formulation. The reliability index of GCP tended to be penportional to the safety factor of allowable stress design and average value was ${\beta}$=2.30. Reliability level that was assessed by reliability analysis and target reliability index for existing structure foundations were compared and analyzed. As a result, The GCP was required a relatively low level of safety compared with deep and shallow foundations and the currd t reliability level were similar to the target reliability in the reinforced earth retaining-wall and soil-nailing. Therefore the target reliability index of GCP suggested as ${\beta}_T$=2.33 by various literatures together with the computed reliability level in this study.

A Study on the Reliability Allocation for an Underwater Guided Weapon System: Case Study (수중유도무기체계의 신뢰도 할당: 사례연구)

  • Kim, HeeWook;Lee, HakPyo;Heo, GilHwan;Oh, GeunTae;Kim, MyungSoo
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.29-35
    • /
    • 2014
  • To improve the reliability of a weapon system, we perform the activities: setting the target reliability, reliability allocation, and reliability management, etc. Before starting weapon system development, the target reliability of system is set through advanced research and is allocated to its subsystems at the beginning of development. Then we manage the reliability of system and subsystems to meet the target reliability until completion of system development. In this paper, we research representative reliability allocation methods and introduce the suitable reliability allocation method followed by its application to the underwater guided weapon system. The purpose of this research is to review the proposed reliability allocation techniques and find an appropriate method for underwater weapon systems followed by the validation of its application.

Alternative Analysis of Reliability Design using Redundancy Technique (리던던시 기법을 활용한 신뢰성 설계 대안 분석)

  • Seo, Yang Woo;Lim, Jae Hoon;Yoon, Jung Hwan;Nam, Hyun Woo;Woo, Yeon Jeong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • In this paper we proposed the alternative analysis of reliability design using redundancy technique. First, we presented the process for establishing the reliability design alternative analysis process considering the active redundancy and the standby redundancy. and then, the case analysis of A driving equipment was performed in accordance with the reliability design alternative analysis process presented. In case the series reliability design result is not met with the reliability target value. so, the target item for redundancy design of A driving equipment were selected as items with a severity of two or higher. The redundancy design applied with active and standby redundancy techniques were analyzed using BlockSim software. As a result, it was analyzed that reliability design to active redundancy with one of two elements required for A driving equipment is the most efficient compared to the target value of reliability. The results of this study can be usefully used before the reliability design is performed.