• Title/Summary/Keyword: Reproducing Kernel Particle Method

Search Result 16, Processing Time 0.025 seconds

Kirchhoff Plate Analysis by Using Hermite Reproducing Kernel Particle Method (HRKPM을 이용한 키르히호프 판의 해석)

  • 석병호;송태한
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.67-72
    • /
    • 2003
  • For the analysis of Kirchhoff plate bending problems, a new meshless method is implemented. For the satisfaction of the $C^1$ continuity condition in which the first derivative is treated an another primary variable, Hermite interpolation is enforced on standard reproducing kernel particle method. In order to impose essential boundary conditions on solving $C^1$ continuity problems, shape function modifications are adopted. Through numerical tests, the characteristics and accuracy of the HRKPM are investigated and compared with the finite element analysis. By this implementatioa it is shown that high accuracy is achieved by using HRKPM for solving Kirchhoff plate bending problems.

Analysis of Bulk Metal Forming Process by Reproducing Kernel Particle Method (재생커널입자법을 이용한 체적성형공정의 해석)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.21-26
    • /
    • 2009
  • The finite element analysis of metal forming processes often fails because of severe mesh distortion at large deformation. As the concept of meshless methods, only nodal point data are used for modeling and solving. As the main feature of these methods, the domain of the problem is represented by a set of nodes, and a finite element mesh is unnecessary. This computational methods reduces time-consuming model generation and refinement effort. It provides a higher rate of convergence than the conventional finite element methods. The displacement shape functions are constructed by the reproducing kernel approximation that satisfies consistency conditions. In this research, A meshless method approach based on the reproducing kernel particle method (RKPM) is applied with metal forming analysis. Numerical examples are analyzed to verify the performance of meshless method for metal forming analysis.

  • PDF

The coupling of complex variable-reproducing kernel particle method and finite element method for two-dimensional potential problems

  • Chen, Li;Liew, K.M.;Cheng, Yumin
    • Interaction and multiscale mechanics
    • /
    • v.3 no.3
    • /
    • pp.277-298
    • /
    • 2010
  • The complex variable reproducing kernel particle method (CVRKPM) and the FEM are coupled in this paper to analyze the two-dimensional potential problems. The coupled method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, resulting in improved computational efficiency. A hybrid approximation function is applied to combine the CVRKPM with the FEM. Formulations of the coupled method are presented in detail. Three numerical examples of the two-dimensional potential problems are presented to demonstrate the effectiveness of the new method.

Kirchhoff Plate Analysis by Using Hermite Reproducing Kernel Particle Method (HRKPM을 이용한 키르히호프 판의 해석)

  • 석병호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.12-18
    • /
    • 2002
  • For the analysis of Kirchhoff plate bending problems, a new meshless method is implemented. For the satisfaction of the C¹ continuity condition in which the first derivative is treated as another primary variable, Hermite interpolation is enforced on standard reproducing kernel particle method. In order to impose essential boundary conditions on solving C¹ continuity problems, shape function modifications are adopted. Through numerical tests, the characteristics and accuracy of the HRKPM are investigated and compared with the finite element analysis. By this implementation, it is shown that high accuracy is achieved by using HRKPM fur solving Kirchhoff plate bending problems.

  • PDF

무요소 해석법에 의한 초탄성 재료의 변형에 관한 연구

  • 진석기;정동원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.732-735
    • /
    • 1995
  • A meshless method which is the new computational method being developed recently, is applied to the simulation of large deformation problems. Among the many types of meshless methods, the Reproducing Kernel particle method (RKPM) is used and the nearly incompressible hyperelastic materials are employed in simulations. The meshless methods can avoid metsh distortions and mesh entanglements that may frequently happen when the mesh-based methods like finite element method are used for the simulations of largely deformed materials. A general features of meshless methods are reviewed and the formulation of RKPM is presented. Next, the performance of explicit RKPM is demonstrated by examples.

  • PDF

Development of a meshless finite mixture (MFM) method

  • Cheng, J.Q.;Lee, H.P.;Li, Hua
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.671-690
    • /
    • 2004
  • A meshless method with novel variation of point collocation by finite mixture approximation is developed in this paper, termed the meshless finite mixture (MFM) method. It is based on the finite mixture theorem and consists of two or more existing meshless techniques for exploitation of their respective merits for the numerical solution of partial differential boundary value (PDBV) problems. In this representation, the classical reproducing kernel particle and differential quadrature techniques are mixed in a point collocation framework. The least-square method is used to optimize the value of the weight coefficient to construct the final finite mixture approximation with higher accuracy and numerical stability. In order to validate the developed MFM method, several one- and two-dimensional PDBV problems are studied with different mixed boundary conditions. From the numerical results, it is observed that the optimized MFM weight coefficient can improve significantly the numerical stability and accuracy of the newly developed MFM method for the various PDBV problems.

The use of RKPM meshfree methods to compute responses to projectile impacts and blasts nearby charges

  • Choi, Hyung-Jin;Crawford, John;Wu, Youcai
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.119-143
    • /
    • 2010
  • This paper presents results from a study concerning the capability afforded by the RKPM (reproducing kernel particle method) meshfree analysis formulation to predict responses of concrete and UHPC components resulting from projectile impacts and blasts from nearby charges. In this paper, the basic features offered by the RKPM method are described, especially as they are implemented in the analysis code KC-FEMFRE, which was developed by Karagozian & Case (K&C).

A Meshless Method and its Adaptivity for Stress Concentration Problems (응력집중문제의 해석을 위한 적응적 무요소절점법에 관한 연구)

  • 이상호;전석기;김효진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.16-23
    • /
    • 1997
  • The Reproducing Kernel Particle Method (RKPM), one of the popular meshless methods, is developed and applied to stress concentration problems. Since the meshless methods require only a set of particles (or nodes) and the description of boundaries in their formulation, the adaptivity can be implemented with much more ease than finite element method. In addition, due to its intrinsic property of multiresolution, the shape function of RKPM provides us a new criterion for adaptivity. Recently, this multiple scale Reproducing Kernel Particle Method and its adaptive procedure have been formulated for large deformation problems by the authors. They are also under development for damage materials and localization problems. In this paper the multiple scale RKPM for linear elasticity is presented and the adaptive procedure is applied to stress concentration problems. Therefore, this work may be regarded as the edition of linear elasticity in the complete framework of multiple scale RKPM and the associated adaptivity.

  • PDF

Analysis of Metal Forming Process Using Meshfree Method (무요소법에 의한 금속성형공정의 해석)

  • Han, Kyu-Taek
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1569-1572
    • /
    • 2003
  • Meshfree approximations exhibit significant potential to solve partial differential equations. Meshfree methods have been successfully applied to various problems which the traditional finite element methods have difficulties to handle, including the quasi-static and dynamic fracture. large deformation problems, contact problems, and strain localization problems. A meshfree method based on the reproducing kernel particle approximation(RKPM) is applied to sheet metal forming analysis in this research. Metal forming examples, such as stretch forming and flanging operation, are analyzed to demonstrate the performance of the proposed meshfree method for largely deformed elasto-plastic material.

  • PDF

대변형 초탄성 재료의 해석을 위한 무요소 적응기법

  • 전석기;정동원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.736-739
    • /
    • 1995
  • The meshless adaptive method based on multiple scale analysis is developed to simulate large deformation problems. In the procedure, new particles are simply added to the orginal particle distribution because meshless methods do not require mesh structures in the formulations. The high scale component of the approximated solution detects the localized region where a refinement is needed. The high scale component of the second invariant od Green-Lagrangian strain tensor is suggested as the new high gradient detector for adaptive procedures. The feasibility of the proposed theory is demonstrated by a numerical experiment for the large deformation of hyperelastic materials.

  • PDF