• Title/Summary/Keyword: Residual Coding

Search Result 124, Processing Time 0.032 seconds

Adaptive Quantization for Transform Domain Wyner-Ziv Residual Coding of Video (변환 영역 Wyner-Ziv 잔차 신호 부호화를 위한 적응적 양자화)

  • Cho, Hyon-Myong;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.98-106
    • /
    • 2011
  • Since prediction processes such as motion estimation motion compensation are not at the WZ video encoder but at its decoder, WZ video compression cannot have better performance than that of conventional video encoder. In order to implement the prediction process with low complexity at the encoder, WZ residual coding was proposed. Instead of original WZ frames, WZ residual coding encodes the residual signal between key frames and WZ frames. Although the proposed WZ residual coding has good performance in pixel domain, it does not have any improvements in transform domain compared to transform domain WZ coding. The WZ residual coding in transform domain is difficult to have better performance, because pre-defined quantization matrices in WZ coding are not compatible with WZ residual coding. In this paper, we propose a new quantization method modifying quantization matrix and quantization step size adaptively for transform domain WZ residual coding. Experimental result shows 22% gain in BDBR and 1.2dB gain in BDPSNR.

Transform-domain Wyner-Ziv Residual Coding using Temporal Correlation (시간적 상관도를 활용한 변환 영역 잔차 신호 Wyner-Ziv 부호화)

  • Cho, Hyon-Myong;Eun, Hyun;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.140-151
    • /
    • 2012
  • In Wyner-Ziv coding, key picture is encoded by conventional H.264/AVC intra coding which has low complexity. Although inter coding is more efficient than intra coding, its complexity is much higher than intra coding due to its motion estimation. Since the main feature of Wyner-Ziv coding is low complexity of encoder, inter coding is not suitable to encode key picture in Wyner-Ziv coding. However, inter picture coding with zero motion vector can be usable for Wyner-Ziv key picture coding instead of intra coding. Moreover, while current transform-domain Wyner-Ziv residual coding only utilizes temporal correlation of WZ picture, if zero motion coding is jointly used to encode key picture in transform-domain Wyner-Ziv residual coding, there will be a significant improvement in R-D performance. Experimental results show that the complexity of Wyner-Ziv coding with the proposed zero motion key picture coding is higher than conventional Wyner-Ziv coding with intra key picture coding by about 9%, however, there are BDBR gains up to 54%. Additionally, if the proposed zero motion key coding is implemented on top of the transform-domain Wyner-Ziv residual coding, the result shows rate gains up to 70% in BDBR compared to conventional Wyner-Ziv coding with intra key picture coding.

Shuffled Discrete Sine Transform in Inter-Prediction Coding

  • Choi, Jun-woo;Kim, Nam-Uk;Lim, Sung-Chang;Kang, Jungwon;Kim, Hui Yong;Lee, Yung-Lyul
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.672-682
    • /
    • 2017
  • Video compression exploits statistical, spatial, and temporal redundancy, as well as transform and quantization. In particular, the transform in a frequency domain plays a major role in energy compaction of spatial domain data into frequency domain data. The high efficient video coding standard uses the type-II discrete cosine transform (DCT-II) and type-VII discrete sine transform (DST-VII) to improve the coding efficiency of residual data. However, the DST-VII is applied only to the Intra $4{\times}4$ residual block because it yields relatively small gains in the larger block than in the $4{\times}4$ block. In this study, after rearranging the data of the residual block, we apply the DST-VII to the inter-residual block to achieve coding gain. The rearrangement of the residual block data is similar to the arrangement of the basis vector with a the lowest frequency component of the DST-VII. Experimental results show that the proposed method reduces the luma-chroma (Cb+Cr) BD rates by approximately 0.23% to 0.22%, 0.44% to 0.58%, and 0.46% to 0.65% for the random access, low delay B, and low delay P configurations, respectively.

Secondary Residual Transform for Lossless Intra Coding in HEVC (제 2차 잔차 변환을 이용한 HEVC 무손실 인트라 코딩)

  • Kwak, Jae-Hee;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.734-741
    • /
    • 2012
  • A new lossless intra coding method based on residual transform is applied to the next generation video coding standard HEVC (High Efficiency Video Coding). HEVC includes a multi-directional spatial prediction method to reduce spatial redundancy by using neighboring samples as a prediction for the samples in a block of data to be encoded. In the new lossless intra coding method, the spatial prediction is performed as samplewise DPCM (Difference Pulse Code Modulation) but is implemented as block-based manner by using residual transform and secondary residual transform on the HEVC standard. Experimental results show that the new lossless intra coding method reduces the bit rate by approximately 6.45% in comparison with the lossless intra coding method previously included in the HEVC standard.

Stereoscopic Video Coding Using MPEG-4 Multiple Auxiliary Component (MPEG-4 MAC(Multiple Auxiliary Component) 기반 스테레오스코픽 비디오 부호화)

  • 조숙희;윤국진;안충현
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.167-170
    • /
    • 2003
  • We propose stereoscopic video coding method using the syntax of MAC(Multiple auxiliary component) that was added to the MPEC-4 visual version 2 in order to describe the transparency of the video object. We also define the novel MAC's semantics in MPEG-4 that should support the proposed coding method. The major difference between the existing coding method and the proposed coding method is the addition of the residual texture coding. The proposed coding method assigns disparity map and residual texture to 3 components of MAC: one component for disparity map and the rest 2 components fer the luminance and chrominance data of the residual texture, respectively. The performance of the proposed method is evaluated in terms of PSNR by computer simulations.

  • PDF

Adaptive Residual Prediction for coding efficiency on H.264 Based Scalable Video Coding (H.264 기반 스케일러블 비디오 부호화에서 부호화 효율을 고려한 잔여신호 예측에 관한 연구)

  • Park, Seong-Ho;Oh, Hyung-Suk;Kim, Won-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.189-191
    • /
    • 2005
  • In the scalable extension of H.264/AVC, the codec is based on a layered approach to enable spatial scalability. In each layer, the basic concepts of motion compensated prediction and intra prediction are employed as in standard H.264/AVC. Additionally inter-layer prediction algorithm between successive spatial layers is applied to remove redundancy. In the inter-layer prediction, as the prediction we can use the signal that is the upsampled signal of the lower resolution layer. In this case, coding efficiency can be variable as the kinds of interpolation filter. In this paper, we investigate the approach to select the interpolation filter for residual signal in order to optimal prediction.

  • PDF

Segmention-Based Residual Image Coding Using Classified Vectior Quantizer (분할기반 잉여신호의 CVQ 영상 부호화)

  • 김남철;김종우;홍원학;석민수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.1
    • /
    • pp.63-71
    • /
    • 1993
  • An efficient RVQ image coding method is proposed using the segmentation-based coding and CVQ techniques. In the proposed method the residual image, the difference between an original image and the synthesized one obtained from the segmentation-based coding, is first dividel into $\times$4 subblocks. They are then individually coded in the spatial domain using a simple CVQ. Experimental results show that the proposed method yields better quality of the reconstructed images in both PSNR and subjective test over the basic VQ and SMVQ.

  • PDF

Residual Filter to Improve Performance of H.264 Video Coding Standard (H.264 동영상 표준 부호화 방식의 성능 향상을 위한 잔여신호 필터)

  • Song, Won-Seon;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1066-1070
    • /
    • 2006
  • In this paper, we present a residual filter to improve performance of H.264 compressed video. In general, noisy video sequences captured by imaging system result in decline of coding efficiency and unpleasant coding artifacts due to higher frequency components. By incorporating local statistics and quantization parameter into filtering process, the spurious noise is significantly attenuated and coding efficiency is improved, leading to improvement of visual quality and to bit-rate saving for given quantization step size. In addition, in order to reduce the complexity of the residual filter, noise induced by analyzing H.264 transformation and quantization processes are introduced. The simulation results show the capability of the proposed algorithm.

Adaptive Residual DPCM using Weighted Linear Combination of Adjacent Residues in Screen Content Video Coding (스크린 콘텐츠 비디오의 압축을 위한 인접 화소의 가중 합을 이용한 적응적 Residual DPCM 기법)

  • Kang, Je-Won
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.782-785
    • /
    • 2015
  • In this paper, we propose a novel residual differential pulse-code modulation (RDPCM) coding technique to improve coding efficiency of screen content videos. The proposed method uses a weighted combination of adjacent residues to provide an accurate estimate in RDPCM. The weights are trained in previously coded samples by using an L1 optimization problem with the least absolute shrinkage and selection operation (LASSO). The proposed method achieves BD-rate saving about 3.1% in all-intra coding.

Disparity-Compensated Stereoscopic Video Coding Using the MAC in MPEG-4

  • Cho, Suk-Hee;Yun, Kug-Jin;Ahn, Chung-Hyun;Lee, Soo-In
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.326-329
    • /
    • 2005
  • The MPEG-4 multiple auxiliary component (MAC) is a good mechanism to achieve one-stream stereoscopic video coding. However, there is no syntax or semantics for the residual texture data of the disparity-compensated image in the current MAC. Therefore, we propose a novel disparity-compensated coding method using the MAC for stereoscopic video. We also define a novel MAC semantics in MPEG-4 so as to support the proposed coding algorithm. The major difference between the existing and proposed coding methods using the MAC is the addition of the residual texture coding.

  • PDF