• Title/Summary/Keyword: Residual stress

Search Result 2,587, Processing Time 0.028 seconds

Characteristics of Carbon Source Biosorption (유기물 생흡착 현상에 관한 기초연구)

  • Lee, Dong-Hoon;Lee, Doo-Jin;Kim, Seung-Jin;Chung, Jonwook;Bae, Wookeun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2006
  • Biosorption technology was used to remove hazardous materials from wastewater, herbicide, heavy metals, and radioactive compounds, based on binding capacities of various biological materials. Biosorption process can be explained by two steps; the first step is that target contaminants is in contact with microorganisms and the second is that the adsorbed target contaminants is infiltrated with inner cell through metabolically mediated or physico-chemical pathways of uptake. Until recently, no information is available to explain the definitive mechanism of biosorption. The purpose of this study is to evaluate biosorption capabilities of organic matters using activated sludge and to investigate affecting factors upon biosorption. Over 49% of organic matter could be removed by positive biosorption reaction under anoxic condition within 10 minutes. The biosorption capacities were constant at around 50 mg-COD/mg-MLSS for all batch experiments. As starvation time increased under aerobic or anaerobic conditions, biosorption capacity increased since higher stressed microorganisms by starvation was more brisk. Starvation stress of microorganisms was higher at aerobic condition than anaerobic one. As temperature increased or easily biodegradable carbon sources were used, biosorption capacities increased. Consequently, biosorption can be estimated by biological -adsorbed capability of the bacterial cell-wall and we can achieve the cost-effective and non -residual denitrification with applying biosorption to the bio-reduction of nitrate.

A Study on Characteristics of the Ni-Pd Alloy Electroplating (Ni-Pd 합금 전해도금의 특성에 관한 연구)

  • Cho, Eun-Sang;Jung, Dae-Gon;Cho, Jin-Ki
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.253-259
    • /
    • 2015
  • The test equipment becomes more important with the development of semiconductor industry. MEMS probe is an important testing component to detect the defects from the generated electric signal when it contacts the metal pad of semiconductor devices. Ni-Pd alloy has been paid attention to as a candidate of MEMS probe material because of its high surface hardness and relatively low resistivity. In this study, electroplated Ni-Pd alloy has been prepared by using ethylene diamine as a complexing agent. Solid solution alloy coating could be formed when concentration of palladium chloride and current density were in the ranges of 1~5 mM and $0.2{\sim}1.5A/dm^2$, respectively. The increase of current density brought about an decrease in palladium content, which made both of lattice parameter and grain size smaller. As a result of grain refinement, high hardness could be obtained. However, surface cracking was observed due to residual stress when the current density was above $1.3A/dm^2$. When effects of heat treatment temperature on hardness and sheet resistance were investigated, the accompanied grain growth decreased both of them. The decrease of hardness remained stable at a temperature of $200^{\circ}C$. The sheet resistance was drastically reduced at $100^{\circ}C$. After that, it was found to become constant.

Microstructure and Mechanical Properties of Hardmaterials

  • Hayashi, Koji
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1994.04c
    • /
    • pp.6-6
    • /
    • 1994
  • Har dmaterials such as cemented carbides with or without coated layer, cermets, ceramics and diamond or c-BN high pressure sintered compact are used for cutting tools, wear -resistant parts, rock drilling bits and/or high pressure vessels. These hardmaterials contain not only hard phase, but also second consituent as the element for forming ductile phase and/or sintering aid, and the mechanical properties of each material depend on (1) the amount of the second constituent as well as (2) the grain size of the hard phase. The hardness of each material mainly depends on these two factors. The fracture strength, however, largely depends on other microstructur a1 factors as well as the above two factors. For all hardmaterials, the fracture strength is consider ably affected by (3) the size of microstructur a1 defect which acts as the fracture source. In cemented carbides, the following factors which are generated mainly due to the addition of the second constituent are also important; (4) the variation of the carbon content in the normal phase region free from V-phase and graphite phase, (5) the precipitation of $Co_3$ during heating at about $800^{\circ}C$,(6) the domain size of binder phase, and (7) the formation of ${\beta}$-free layer or Co-rich layer near the surface of sintered compacts. For cemented carbides coated with thin hard substance, the important factors are as follows; (8) the kind of coated substance, (9) the formation of ${\eta}$-phase layer at the interface between coated layer and substrate, (10) the type of residual stress (tension or compression) in the coated layer which depends on the kind of coating method (CVD or PVD), and (11) the properties of the substrate, and (12) the combination, coherency and periodicity of multi-layers. In the lecture, the details of these factors and their effect on the strength will be explained.

  • PDF

The Effect of the Core-shell Structured Meta-aramid/Epoxy Nanofiber Mats on Interfacial Bonding Strength with an Epoxy Adhesive in Cryogenic Environments (극저온 환경에서 에폭시 접착제의 물성 향상을 위한 나노 보강재의 표면 개질에 관한 연구)

  • Oh, Hyun Ju;Kim, Seong Su
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.129-134
    • /
    • 2013
  • The strength of adhesive joints employed in composite structures under cryogenic environments, such as LNG tanks, is affected by thermal residual stress generated from the large temperature difference between the bonding process and the operating temperature. Aramid fibers are noted for their low coefficient of thermal expansion (CTE) and have been used to control the CTE of thermosetting resins. However, aramid composites exhibit poor adhesion between the fibers and the resin because the aramid fibers are chemically inert and contain insufficient functional groups. In this work, electrospun meta-aramid nanofiber-reinforced epoxy adhesive was fabricated to improve the interfacial bonding between the adhesive and the fibers under cryogenic temperatures. The CTE of the nanofiber-reinforced adhesives were measured, and the effect on the adhesion strength was investigated at single-lap joints under cryogenic temperatures. The fracture toughness of the adhesive joints was measured using a Double Cantilever Beam (DCB) test.

Friction Force Microscopy Analysis of Diamond-like Carbon Films (다이아몬드상 카본 박막의 Friction Force Microscopy 분석)

  • Choi, Won-Seok;Lee, Jong-Hwan;Song, Beom-Young;Heo, Jin-Hee;You, Jin-Soo;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.181-181
    • /
    • 2008
  • DLC (Diamond-like Carbon) 박막은 높은 내마모성과 낮은 마찰 계수, 화학적 안정성 및 적외선 영역에서의 높은 투과율과 낮은 광 반사도, 높은 전기저항과 낮은 유전율, 전계방출특성 등 여러 가지 장점을 가진 물질이다[1]. 최근에는 DLC 박막의 여러 장점들과 산과 염기 유기용매에 대한 화학적 안정성으로 인하여 인조관절에서 인공심장의 판막에 이르기까지 의공학 관련 부품소재로 응용되고 있으며 내구성과 안정성에 있어서 탁월한 성능을 보여주고 있다. 또한 DLC 박막의 높은 경도와 낮은 마찰 계수, 부드러운 박막 표면 (수nm의 RMS 거칠기)의 장점을 살려 마그네틱 미디어와 하드디스크의 슬라이딩 표면에 사용되어지고, MEMS (Micro-Electro Mechanical System) 소자와 MMAs (Moving Mechanical Assemblies)의 고체윤활코팅으로 활용하여 미세기계의 내구성과 성능 향상을 도모할 수 있다. 이와 같이 DLC 박막은 다양한 분야에 응용되고 있으며, 박막이 지닌 여러 가지 장점들로 인하여 더 많은 분야에 응용될 가능성을 지닌 물질이다. 그러나 수 ${\mu}m$이상의 두께에서 박막이 높은 잔류응력 (residual stress)을 가지고, 열에 취약하여 이의 개선에 관한 연구들이 진행되어 지고 있다 [2]. 따라서 사용되는 목적에 따라 용도에 맞는 양질의 DLC 박막을 합성하기 위해선 합성 장치의 개발과 다양한 실험을 통한 최적의 합성조건 도출 등의 노력이 요구된다. 또한 DLC 박막 합성시의 여러 가지 증착 방법에 따른 박막 물성에 대한 재현성 확보 및 박막 증착에 관한 명확한 메커니즘 규명이 아직까지는 불분명하여 이에 관한 연구가 시급하다. 따라서 본 연구에서는 MEMS 소자와 MMAs의 고체윤활코팅으로 사용가능한 DLC 박막을 RF PECVD (Plasma Enhanced Vapor Deposition) 방식으로 합성하고 후열처리 온도에 따른 DLC 박막의 마찰계수 변화를 박막에 훼손을 주지 않는 FFM (Friction Force Microscopy) 방식을 사용하여 분석하였다.

  • PDF

Fatigue Crack Growth of Welded-Structural Steel under Simple-Variable Loading (단순변동하중(單純變動荷重)을 받는 용접구조용강(鎔接構造用鋼)의 피로균열성장(疲勞龜裂成長))

  • Chang, Dong Il;Bak, Yong Gul;Lee, Bong Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.103-113
    • /
    • 1987
  • Fatigue tests using a single-peak loading and a two-step loading were carried out to examine the fatigue crack growth behaviar and to find the appropriate analysis method. C-T specimens were made using structural steel SWS58 for the tests. From this, just after a single-peak loading acceleration effect was occured and after some times retardation effect was found. And eminent retardation effect was found after High-Low two-step loading. The transition effect of crack growth due to this variable loading was occured owing to the residual stress and the plastic zone size at the crack tip. And the behaviors of these are well explained by Elber's Crack Closure Model. Also I could find that the Wheeler's Retardation Model is a simple and appropriate theory among analysis methods of fatigue crack growth under the variable loading.

  • PDF

Optimization of an Injection Molding Process for Polycarbonate Car Switch Buttons Using the Taguchi Method (실험계획법에 의한 폴리카보네이트 차량 스위치 버튼의 사출성형공정 최적화)

  • Kim, Cheol;Park, Jaewoo
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.7-15
    • /
    • 2016
  • The quality of polymeric automotive parts depends highly on an injection molding process, which causes various defects, such as warpage, sink marks, weld lines, shrinkage, residual stress, etc. This study is to determine the optimum processing parameters, such as packing pressure, mold temperature, melting temperature, and packing time for the manufacture of polycarbonate buttons in cars on the basis of FEM, the Taguchi method, and analysis of variance (ANOVA). As a result, the optimum processing parameters of buttons made of polycarbonate material were obtained as follows: 140 MPa of packing pressure, $105^{\circ}C$ of mold temperature, $292.5^{\circ}C$ of melting temperature and 1 second of packing time. A gain of S/N (signal to noise) ratio, 10.2, was obtained with the optimum values. Moreover, the melting temperature was found to be the most significant factor followed by the mold temperature.

Size-dependent analysis of functionally graded ultra-thin films

  • Shaat, M.;Mahmoud, F.F.;Alshorbagy, A.E.;Alieldin, S.S.;Meletis, E.I.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.431-448
    • /
    • 2012
  • In this paper, the first-order shear deformation theory (FSDT) (Mindlin) for continuum incorporating surface energy is exploited to study the static behavior of ultra-thin functionally graded (FG) plates. The size-dependent mechanical response is very important while the plate thickness reduces to micro/nano scales. Bulk stresses on the surfaces are required to satisfy the surface balance conditions involving surface stresses. Unlike the classical continuum plate models, the bulk transverse normal stress is preserved here. By incorporating the surface energies into the principle of minimum potential energy, a series of continuum governing differential equations which include intrinsic length scales are derived. The modifications over the classical continuum stiffness are also obtained. To illustrate the application of the theory, simply supported micro/nano scaled rectangular films subjected to a transverse mechanical load are investigated. Numerical examples are presented to present the effects of surface energies on the behavior of functionally graded (FG) film, whose effective elastic moduli of its bulk material are represented by the simple power law. The proposed model is then used for a comparison between the continuum analysis of FG ultra-thin plates with and without incorporating surface effects. Also, the transverse shear strain effect is studied by a comparison between the FG plate behavior based on Kirchhoff and Mindlin assumptions. In our analysis the residual surface tension under unstrained conditions and the surface Lame constants are expected to be the same for the upper and lower surfaces of the FG plate. The proposed model is verified by previous work.

Effect of cavitation for electrochemical characteristics in seawater for austenitic 304 stainless steel (오스테나이트계 STS 304강의 해수 내 전기화학적 특성에 미치는 캐비테이션의 영향)

  • Kim, Seong-Jong;Lee, Seung-Jun;Chong, Sang-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.484-492
    • /
    • 2013
  • With the industrial acceleration in a lot of countries of the world, the demand for anti-corrosion and anti-abrasion material increases continuously. Particularly, stainless steel with the fine surface and excellent corrosion resistance is widely used in various industrial fields including ship, offshore structures tidal power plant, and etc. In marine environment, however, it is easy to generate by the corrosion damage by $Cl^-$ ion and cavitation damage due to high rotation speed on stainless steel. Therefore, in this research, the cavitation erosion-corrosion test (Hybrid test) was performed for 304 stainless steel specimen used in the high flow rate seawater environment. And the cavitation damage behavior in the corrosive environment was analyzed overall. The high hardness was shown due to the formation of compressive residual stress by the water cavitation peening effect in cavitation condition. However, high current density in the potentiodynamic polarization experiment presented with the breakdown of the passive film caused by physical impact. Therefore, both electrochemical characteristics and mechanical properties must be taken into account to improve the cavitation resistance in seawater.

Improving the Whitening Phenomenon Technology for Preform PET Injection Molding by Using a Ceramic Insulation Gate (세라믹 단열 게이트를 이용한 블로우성형용 PET 프리폼의 백화현상 저감 기술)

  • Kwak, Tae-Soo;Hwang, Deok-Sang;Kang, Byung-Ook;Kim, Tae-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.63-68
    • /
    • 2017
  • The purpose of this study is to improve the whitening phenomenon around the PET preform gate for blow molding. CAE analysis of plastic injection molding has been applied to design of preform shape and select the injection molding conditions. A ceramic insulation gate with lower thermal conductivity than metal is applied to improve the whitening phenomenon created around the gate in the injection molding process. According to the results of CAE analysis, the warpage deformation at the square corner was estimated to be about 0.34 mm at the bottom. From the results of the temperature history analysis, it was confirmed that the resin near the gate cooled more rapidly than the cavity. Ceramic insulated gates were fabricated to reduce the cooling rate and experiments were conducted to confirm the effectiveness of the whitening phenomenon improvement. As a result of the ceramic insulation gate experiment, it was confirmed that the whitening phenomenon was significantly reduced around the gate.