• Title/Summary/Keyword: Resonance Frequency Analysis

검색결과 977건 처리시간 0.028초

원통형 수직 펌프의 공진회피를 위한 접수진동해석 (Fluid-Structure Interaction (FSI) Modal Analysis to Avoid Resonance of Cylinder Type Vertical Pump at Power Plant)

  • 이재환;왕즈텅;아코마링
    • 대한조선학회논문집
    • /
    • 제55권4호
    • /
    • pp.321-329
    • /
    • 2018
  • Resonance phenomena occurs at large vertical pump which is operating to cool down the hot steam using sea water in the power plant. To avoid the resonance, the natural frequency needs to be isolated about 20% from motor operating speed. Yet, excessive vibration occurs especially at low tide. At first, natural frequency of the whole pump system and each part is calculated using ANSYS. As it is revealed in the previous journal papers that only circular pipe part is related to resonance, the FSI technique is applied for free vibration analysis. The natural frequency is reduced to 60% (compared to that) of the frequency measured in air as it is similar to other published results. And the frequency obtained by finite element analysis is almost same to that obtained from modal test. Based on the accurate finite element model and analysis, design change is tried to avoid the resonance by changing the thickness of pipe and base supporting plate. In stead of doing optimization process, design sensitivity is computed and used to find such designs to avoid resonance.

LCL 필터를 사용하는 계통연계형 인버터의 동기좌표계 PI 전류제어 안정도 해석 (Analysis of Current Control Stability using PI Control in Synchronous Reference Frame for Grid-Connected Inverter with LCL Filter)

  • 조종민;이태진;윤동현;차한주
    • 전력전자학회논문지
    • /
    • 제21권2호
    • /
    • pp.168-174
    • /
    • 2016
  • In this paper, current control using PI controller in the synchronous reference frame is analyzed through the relationship among bandwidth, resonance frequency, and sampling frequency in the grid-connected inverter with LCL filter. Stability is investigated by using bode plot in frequency domain and root locus in discrete domain. The feedback variable is the grid current, which is regulated by the PI controller in the synchronous reference frame. System delay is modeled as 1.5Ts, which contains computational and PWM modulator delay. Two resonance frequencies are given at 815 Hz and 3.16 kHz from LCL filter parameters. Sufficient phase and gain margins can be obtained to guarantee stable current control, in case that resonance frequency is above one-sixth of the sampling frequency. Unstable current control is performed when resonance frequency is below one-sixth of the sampling frequency. Analysis results of stability from frequency response and discrete response is the same regardless of resonance frequency. Finally, stability of current control based on theoretical analysis is clearly verified through simulation and experiment in grid-connected inverters with LCL filter.

마이크로스피커에서 공명진동수와 QTS 사이의 연관성 (Relationship Between the Resonance Frequency and QTS for Microspeaker)

  • 오세진
    • 한국재료학회지
    • /
    • 제21권7호
    • /
    • pp.403-409
    • /
    • 2011
  • Micro speakers are used to reproduce sound in small electric and information and communications devices, such as cellular phones, PMPs, and MP3 players. The acoustical properties and sound quality, which are changed due to the decreased size of the speaker, are often adjusted varying the type and thickness of the diaphragm. The most widely used diaphragm material is thin polymer. It was previously reported by the author of this paper that the resonance frequency of a micro speaker is changed by the type and thickness of a polymer diaphragm. In this paper, the frequency response near the resonance frequency of a micro speaker was studied as functions of the type and thickness of the polymer diaphragm. While $R_{max}$ and $R_{DC}$ were affected by the type and thickness, an analysis of the electrical impedance curve revealed that $R_o(= R_{max}/R_{DC})$ and ${\Delta}f$ were not changed. Thus, $Q_{TS}$ which was function of $R_o$, ${\Delta}f$, and the resonance frequency, is only related to the resonance frequency. The increase of the resonance frequency led to a proportional rise of $Q_{TS}$. The change of the frequency response near the resonance frequency was not dependent on the type or thickness of the polymer diaphragm, but was affected by the resonance frequency.

보일러 튜브군의 음향공진 회피를 위한 음향배플의 위치에 따른 FEM 음향모드해석 (FEM acoustic modal analysis due to location of acoustic baffles to avoid acoustic resonance in the tube bank of boiler for power plant)

  • 안성종;주영호;김철홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.150-154
    • /
    • 2012
  • A flow induced mechanical vibration and acoustic resonance should be considered at design stage because they are mainly occurred in the tube bank of boiler. Acoustic resonance is occurred when the vortex shedding frequency of tube bank coincides with the acoustic natural frequency of the cavity. Effective solution to avoid acoustic resonance is installing acoustic baffles in the tube banks parallelly inside of the flow cavity. Thus, location and number of acoustic baffles should be exactly calculated to eliminate the acoustic resonance. This paper presents case study of acoustic resonance due to inappropriate number and location of acoustic baffles. Measured frequency and mode in the study is verified by FEM acoustic modal analysis. The number and location of acoustic baffles to avoid acoustic resonance are calculated by using FEM acoustic modal analysis.

  • PDF

주파수 유연화 운영에 따른 발전기 축 비틀림에 관한 연구 (A Study on the Subsynchronous Resonance by Flexible Frequency Operation)

  • 조윤성
    • 조명전기설비학회논문지
    • /
    • 제29권4호
    • /
    • pp.62-68
    • /
    • 2015
  • Subsynchronous Resonance is a condition where the electrical power systems composed of generator and transmission line exchange energy with mechanical turbine-generator system at the frequency of the combined below the subsynchronous frequency. Therefore, the frequency of power systems should be associated with the subsynchronous resonance. This paper describes subsynchronous resonance by flexible frequency operation. It focuses on the characteristics and behavior of subsynchronous resonance. The subsynchronous resonance is being conducted by real-time digital simulator and the IEEE benchmark model for subsynchronous resonance have been utilized for the test systems.

DC-DC 벅 컨버터의 차동모드 노이즈 분석을 위한 고주파 등가회로 모델 (High-Frequency Equivalent Circuit Model for Differential Mode Noise Analysis of DC-DC Buck Converter)

  • 신주현;김우중;차한주
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.473-480
    • /
    • 2020
  • In this paper, we proposed a high frequency equivalent circuit considering parasitic impedance components for differential noise analysis on the input stage during DC-DC buck converter switching operation. Based on the proposed equivalent circuit model, we presented a method to measure parasitic impedance parameters included in DC bus plate, IGBT, and PCB track using the gain phase method of a network analyzer. In order to verify the validity of this model, a DC-DC prototype consisting of a buck converter, a signal analyzer, and a LISN device, and then resonance frequency was measured in the frequency range between 150 kHz and 30 MHz. The validity of the parasitic impedance measurement method and the proposed equivalent model is verified by deriving that the measured resonance frequency and the resonance frequency of the proposed high frequency equivalent model are the same.

공진 주파수를 고려한 차량 섀시 부품의 피로해석 (Fatigue Analysis of Vehicle Chassis Component Considering Resonance Frequency)

  • 이상범;임홍재
    • 한국공작기계학회논문집
    • /
    • 제13권6호
    • /
    • pp.94-101
    • /
    • 2004
  • The purpose of this raper is to assess the benefits of frequency domain fatigue analysis and compare it with more conventional time domain techniques. The multi-body dynamic analysis, FE analysis and fatigue life prediction technique are applied for the frequency domain fatigue analysis. To obtain the dynamic load history used in the frequency domain fatigue analysis, the computer simulations running over typical road Profiles are carried out by utilizing vehicle dynamic model. The fatigue life estimation for the rear suspension system of small-sized passenger car is performed by using resonance durability analysis technique, and the estimation results are compared with the conventional quasi-static durability analysis results. For the pothole simulation, the percent changes, of the fatigue life between the two durability analysis techniques don't exceed 10%. But for the Belgian road simulation because of the resonance effect, the fatigue life using the resonance durability analysis technique are much smaller estimated than the quasi-static durability analysis results.

Class I Flextensional 변환기의 주파수 특성 변화 (Frequency Characteristics Variation of a Class I Flextensional Transducer)

  • 강국진;백종후;이영진
    • 한국전기전자재료학회논문지
    • /
    • 제22권2호
    • /
    • pp.142-150
    • /
    • 2009
  • We constructed a Class I flextensional transducer, and analyzed the variation of the resonance frequency of the transducer in relation to its structural and material variables. We used the FEM for the analysis. Total length of the transducer, thickness and material properties of the shell have large effects on the resonance frequency. While outer radius of the ceramic stack and material properties of the ceramic stack have no effect on the resonance frequency. In addition, the validation of the FE model was verified by manufacturing and comparison of the impedance analysis. Results of the present work can be utilized to design a Class I flextensional transducers of various resonance frequency.

Study on Moonpool Resonance Effect on Motion of Modern Compact Drillship

  • Yang, Seung Ho;Yang, Young Jun;Lee, Sang Beom;Do, Jitae;Kwon, Sun Hong
    • 한국해양공학회지
    • /
    • 제27권3호
    • /
    • pp.53-60
    • /
    • 2013
  • A drillship is a representative floating offshore installation. The boom in oil and gas field development has dramatically increased the demands for drillships. Drillships have a moonpool in the center area of the ship for the purpose of drilling. This moonpool has an effect on the seakeeping performance of a drillship in the vicinity of the resonance frequency. Because of the moonpool, drillships act in different resonance modes, called the sloshing mode and piston mode. The objective of this study was to find the moonpool effect on the motion of a drillship through the motion analysis of a currently operating modern compact drillship. The predicted resonance frequencies based on Molin's theoretical formula, Fukuda's empirical formula, and BEM-based numerical analysis are compared. The accuracy of the predictions using the theoretical and empirical formulas is compared with the numerical analysis and evaluated. In the case of the piston mode, the difference between the resonance frequency from theoretical formula and the resonance frequency from the numerical analysis is analyzed. The resonance frequency formula for more a complex moonpool geometry such as a moonpool with a cofferdam is necessarily emphasized.

대형석탄화력발전용 보일러 관군의 Anti-Noise Baffle 설치에 따른 음향공진 (Acoustic resonance by Inserting Anti-noise Baffle in the Tube Bank of Boiler of a Large Fossil Power Plant)

  • 방경보;김철홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.178-183
    • /
    • 2004
  • This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a large fossil power plant. The phenomena of acoustic resonance may arise when the vortex shedding frequency coincides with the acoustic natural frequency. In this system dominant frequency of vibration and noise was 37.5Hz. The $3^{rd}$ acoustic natural frequency calculated was 37.2 Hz. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}20%$, acoustic resonance could occur. If system is the state of acoustic resonance, vibration and noise become large. In order to prevent acoustic resonance, anti-noise baffle should be installed in the tube bank. In the case of installing baffle, we should consider the number of baffle and the effect of acoustic mode due to baffle extension length. To do this, we did acoustic mode analysis. After installing anti-noise baffle, acoustic resonance was disappeared and vibration magnitude and noise level was reduced dramatically.

  • PDF