• Title/Summary/Keyword: Respiration Measurement

Search Result 196, Processing Time 0.033 seconds

Respiration Measurement Sleeping Pillow System (호흡 측정 수면베개 시스템)

  • Ahn, Dohyun;Minh, Tran;Lee, Jongmin;Park, Jaehee
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.280-285
    • /
    • 2017
  • This paper presents a respiration measurement sleeping pillow based on pressure sensors. The respiration measurement sleeping pillow system consists of a sleeping pillow, an interface circuit, a respiration measurement system, and four force-sensitive resistor(FSR) sensors attached at the bottom of the sleeping pillow. The FSR sensors are used to detect the respiration signals induced by the body movement while breathing. The respiration signals of a twenty health man were measured and analyzed by utilizing the respiration measurement sleeping pillow system. The pillow system could detect the respiration signals and had similar characteristics to the chest type BIOPAC respiration sensor used by medical doctors. The respiration rates of ten subjects were also measured. The average measurement accuracy was about 98.8%. The research results showed that this pillow system can be used to detect and analyze the respiration signal when sleeping for the better sleep management.

Abdominal Wall Motion-Based Respiration Rate Measurement using An Ultrasonic Proximity Sensor (복부 움직임에 따른 초음파 근접센서를 이용한 호흡측정에 관한 연구)

  • Min, Se-Dong;Kim, Jin-Kwon;Shin, Hang-Sik;Yun, Young-Hyun;Lee, Chung-Keun;Lee, Jeong-Whan;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2071-2078
    • /
    • 2009
  • In this paper, we proposed a non-contact respiration measurement system with ultrasonic proximity sensor. Ultrasonic proximity sensor approach of respiration measurement which respiration signatures and rates can be derived in real-time for long-term monitoring is presented. 240 kHz ultrasonic sensor has been applied for the proposed measurement system. The time of flight of sound wave between the transmitted signal and received signal have been used for a respiration measurement from abdominal area. Respiration rates measured with the ultrasonic proximity sensor were compared with those measured with standard techniques on 5 human subjects. Accurate measurement of respiration rate is shown from the 50 cm measurement distance. The data from the method comparison study is used to confirm the performance of the proposed measurement system. The current version of respiratory rate detection system using ultrasonic can successfully measure respiration rate. The proposed measurement method could be used for monitoring unconscious persons from a relatively close range, avoiding the need to apply electrodes or other sensors in the correct position and to wire the subject to the monitor. Monitoring respiration using ultrasonic sensor offers a promising possibility of non-contact measurement of respiration rates. Especially, this technology offers a potentially inexpensive implementation that could extend applications to consumer home-healthcare and mobile-healthcare products. Further advances in the sensor design, system design and signal processing can increase the range of the measurement and quality of the rate-finding for broadening the potential application areas of this technology.

Respiration Measurement System using Textile Capacitive Pressure Sensor (전기용량성 섬유 압력센서를 이용한 호흡측정 시스템)

  • Min, Se-Dong;Yun, Young-Hyun;Lee, Chung-Keun;Shin, Hang-Sik;Cho, Ha-Kyung;Hwang, Seon-Cheol;Lee, Myoung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.58-63
    • /
    • 2010
  • In this paper, we proposed a wearable respiration measurement system with textile capacitive pressure sensor. Belt typed textile capacitive pressure sensor approach of respiration measurement, from which respiration signatures and rates can be derived in real-time for long-term monitoring, are presented. Belt typed textile capacitive pressure sensor has been developed for this measurement system. the distance change of two plates by the pressure of motion has been used for the respiration measurement in chest area. Respiration rates measured with the textile capacitive pressure sensor was compared with standard techniques on 8 human subjects. Accurate measurement of respiration rate with developed sensor system is shown. The data from the method comparison study is used to confirm theoretical estimates of change in capacitance by the distance change. The current version of respiratory rate detection system using textile capacitive pressure sensor can successfully measure respiration rate. It showed upper limit agreement of $3.7997{\times}10^{-7}$ RPM, and lower limit of agreement of $-3.8428{\times}10^{-7}$ RPM in Bland-Altman plot. From all subject, high correlation were shown(p<0.0001). The proposed measurement method could be used to monitor unconscious persons, avoiding the need to apply electrodes to the directly skin or other sensors in the correct position and to wire the subject to the monitor. Monitoring respiration using textile capacitive pressure sensor offers a promising possibility of convenient measurement of respiration rates. Especially, this technology offers a potentially inexpensive implementation that could extend applications to consumer home-healthcare and mobile-healthcare products. Further advances in the sensor design, system design and signal processing can increase the range and quality of the rate-finding, broadening the potential application areas of this technology.

Accuracy improvement of respiration rate based on photo-plethysmography by enhancing motion artifact (광용적맥파(PPG)를 이용한 호흡수 측정에 있어서 동잡음을 이용한 정확도 향상)

  • Huh, Young-Jung;Yoon, Gil-Won
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.447-453
    • /
    • 2008
  • Respiration rate is one of the important vital signs. Photo-plethysmography (PPG) measurement especially on a finger has been widely used in pulse oximetry and also used in estimating respiration rate. It is well known that PPG contains respiration-induced intensity variation (RIIV) signal. However, the accuracy of finger PPG method has been controversial. We introduced a new technique of enhancing motion artifact by respiration. This was achieved simply by measuring PPG on the thorax. We examined the accuracy of these two PPG methods by comparing with two existing methods based on thoracic volume and nostril temperature changes. PPG sensing on finger tip, which is the most common site of measurement, produced 6.1 % error. On the other hand, our method of PPG sensing on the thorax achieved 0.4 % error which was a significant improvement. Finger PPG is sensitive to motion artifact and it is difficult to recover fully small respiratory signal buried in waveform dominated by absorption due to blood volume changes. Thorax PPG is poor to represent blood volumes changes since it contains substantial motion artifact due to respiration. Ironically, this inferior quality ensures higher accuracy in terms of respiration measurement. Extreme low-cost and small-sized LED/silicon detector and non-constrained reflection measurement provide a great candidate for respiration estimation in ubiquitous or personal health monitoring.

Development of Pneumography Impedance Based Respiration Measurement System Using Kalman Filter (칼만 필터를 이용한 흉곽 임피던스법 기반의 호흡 신호 계측시스템 개발)

  • Nam, Eun-Hye;Choi, Chang-Hyun;Kim, Yong-Joo;Shin, Dong-Ryeol
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.326-332
    • /
    • 2008
  • A respiration measurement system for vital signs was developed. Respiration signals were measured, processed, and analyzed. Four electrodes, attached on the surface of the skin, were used to monitor respiration signals by impedance pneumography. The measured signals were amplified, detrended, filtered, and transferred toan embedded module. The Kalman filter was used to remove motion artifact from the respiration signals. Experiments were conducted at stable condition and walking condition to evaluate the performance of the system. Respiration rates of five males and five females were measured and analyzed at each condition. The referenced respiration signal was determined by temperature of nose surroundings. The results showed that the respiration rates at the walking condition had more motion artifacts than the stable condition. The accuracies of the respiration measurement system with Kalman filter were found as 96% at the stable condition and 95% at the walking condition. The results showed that the Kalman filter was an effective tool to remove the motion artifact from the respiration signal.

PPG Filtering Method for Respiration Measurement in U-Health Care System (U-Health Care 환경에서 호흡측정을 위한 PPG 최적필터기술)

  • Kim, Jong-Hwa;Whang, Min-Cheol;Nam, Ki-Chang
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.95-101
    • /
    • 2008
  • This research is to develop PPG filtering method for respiration measurement in U-Health Care system. Respiration rate was determined by filtering PPG and analyzing its spectrum. Optimal filter of PPG has been selected to get respiration by testing 120 sets of experiment data using 700 filtering cases. As a result, 2nd order Bessel-filter that used band-pass cutoff frequency at 0.175~0.4Hz with second order was good at developing respiration signal. Respiration signal in time domain could be continuously analyzed by converting frequency domain using spectrum analysis. 24 seconds has been found to be optimal time duration of collecting PPG data for determining respiration. Therefore, this study was successful of getting not only heart activity but also respiration by only PPG. Minimal invasive measurement obtaining multi-bio information by one sensor can be expected to apply to U-Health Care and human computer interaction.

Breathing Measurement and Sleep Apnea Detection Experiment and Analysis using Piezoelectric Sensor

  • Cho, Seokhyang;Cho, Seung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.17-23
    • /
    • 2017
  • In this paper, we implemented a respiration measurement system consisting of piezoelectric sensor, respiration signal processing device, and a viewer on a notebook. We tried an experiment for measuring respiration and detecting sleep apnea syndrome when a subject lay on a bed. We applied the respiration measurement algorithm to sensor data obtained from four subjects. In order to get a good graph shape, data manipulation methods such as moving averages and maximum values were applied. The window size for moving average was chosen as N=70, and the threshold value for each subject was customized. In this case, the proposed system showed 96.0% accuracy. When the maximum value among 90 data was applied instead of moving average, our system achieved 95.1% accuracy. In an experiment for detecting sleep apnea syndrome, the system showed that sleep apnea occurred correctly and calculated the average interval of sleep apnea. While infants or the elderly as well as patients with sleep apnea syndrome are lying down on a bed, our results are also expected to be able to cope with some accidental emergency situation by observing their respiration and detecting sleep apnea.

The Modeling of the Differential Measurement of Air Pressure for Non-intrusive Sleep Monitoring Sensor System

  • Chee, Young-Joon;Park, Kwang-Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.373-381
    • /
    • 2005
  • The respiratory and heart beat signals are the fundamental physiological signals for sleep monitoring in the home. Using the air mattress sensor system, the respiration and heart beat movements can be measured without any harness or sensor on the subject's body which makes long term measurement difficult and troublesome. The differential measurement technique between two air cells is adopted to enhance the sensitivity. The concept of the balancing tube between two air cells is suggested to increase the robustness against postural changes during the measurement period. With this balancing tube, the meaningful frequency range could be selected by the pneumatic filter method. The mathematical model for the air mattress and balancing tube was suggested and the validation experiments were performed for step and sinusoidal input. The results show that the balancing tube can eliminate the low frequency component between two cells effectively. This technique was applied to measure the respiration and heart beat on the bed, which shows the potential applications for sleep monitoring device in home. With the analysis of the waveform, respiration intervals and heart beat intervals were calculated and compared with the signal from conventional methods. The results show that the measurement from air mattress with balancing tube can be used for monitoring respiration and heart beat in various situations.

Sleep Management Pillow System (수면 관리 베개 시스템)

  • Ahn, Dohyun;Tran, Minh;Park, Jaehee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.212-217
    • /
    • 2019
  • In this paper, a sleep management pillow system for snoring detection and respiration measurement is investigated. The sleep management pillow system consists of four force sensing resistor(FSR) sensors, two microphones(MIC), a pillow, a measurement system. Four FSR sensors attached at the bottom part of the pillow are used for respiration measurement and snoring detection. Two microphones located at the middle left and right of the pillow are utilized for only snoring detection. The respiration and the snoring of ten young people were measured using the sleep management pillow system composed of a data acquisition board, interface circuit, and personal computer. The measurement accuracy of the respiration was about 98% and the measurement accuracy of the snoring was about 97%. The experiment results show that the sleep management pillow system can be used for snoring detection and respiration rate measurement during sleeping.

A Review on Soil Respiration Measurement and Its Application in Korea (토양호흡의 측정과 국내 연구 현황에 대한 고찰)

  • Lee, Eun-Hye;Lim, Jong-Hwan;Lee, Jae-Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.264-276
    • /
    • 2010
  • The objectives of this study were to introduce the methods of soil respiration measurement, to review soil respiration studies conducted in Korea, and to suggest potential issues generated from using various methods for soil respiration measurement. According to the measurement principles, the methods of soil respiration measurements are classified as: alkali absorption method (AA), closed chamber method (CC), closed dynamic chamber method (CDC), and open flow method (OF). Based on the litereaure review on soil respiration studies in Korea, the CDC method was mostly used by the researchers (62%), followed by the AA (17%), OF (13%) and CC (8%) methods. Along with these methods, various instruments were used such as LI-6400-09, EGM-3, EGM-4, and automatic soil respiration chamber. Most of the soil respiration measurements were carried out in forest ecosystems and the reported soil respiration showed a wide range of variations from 130 to 900 mg $CO_2\;m^{-2}h^{-1}$. Continuous monitoring of soil respiration with minimal disturbance and the potential inconsistency in measurements are still the challenges facing the researchers, causing a paucity in quality datasets of sufficient quantity. Few attempts of intercomparison among different methods hinder the data users from synthetic analysis and assessment of the collected datasets. In order to better estimate soil carbon budget and understand their exchange mechanisms in key ecosystems of Korea, it is necessary to measure soil respiration at various plant functional types, soils, and climate conditions over a decadal time scale along with the study on the partitioning of soil respiration into autotrophic and heteorotrophic components.