• Title/Summary/Keyword: Response position

Search Result 1,117, Processing Time 0.025 seconds

The Respiratory and Hemodynamic Effect of Prone Position in Patients with ARDS (급성호흡부전증후군에서 Prone Position의 호흡 및 혈류역학적 효과)

  • Lim, Chae-Man;Koh, Youn-Suck;Jung, Bok-Hyun;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.5
    • /
    • pp.1105-1113
    • /
    • 1997
  • Background : Prone position improves oxygenation in some patients with ARDS. According to some authors, prone position can also improve the deteriorated hemodynamics induced by PEEP. But these respiratory and hemodynamic effects of prone position has not yet been fully established. Methods : Twentythree consequtive patients with ARDS(M : F= 11 : 12, $62.1{\pm}20.8yrs$) were the subjects for this study. ABGA, static compliance of the respiratory system, mean arterial pressure and pulse rate were obtained in supine position and at 5min, 0.5h and 2h of prone position. Positive respiratory response was defined as 20mmHg or more increase in $PaO_2/FIO_2$ within 2h of prone position. Early of late respiratory responses were defined if the positive response was observed within of after 3 day of ARDS onset, respectively. Positive hemodynamic response was defined as 10mmHg or more increase in mean arterial pressure at 5min of prone position. Results : Fifteen patients (65%) showed positive respiratory response. In the respiratory responders, $PaO_2$ was $69.8{\pm}17.6mmHg$ in supine position, $83.2{\pm}22.6mmHg$ in prone position 0.5h, $96.8{\pm}22.7mmHg$ in prone position 2h(p<0.001), and $PaO_2/FIO_2$ was $108{\pm}41mmHg$, $137{\pm}57mmHg$, $158{\pm}50mmHg$, respectively(p=0.001). Age, sex, cause of ARDS, supine $PaO_2$ and $PaO_2/FIO_2$ were not different between the respiratory responders and the nonresponders. The respiratory responders, however, showed higher mean arterial pressure than the nonresponders($91.1{\pm}13.1mmHg$ vs. $76.0{\pm}18.7mmHg$, p=0.035), and tendency of higher survival rate(9/15 vs. 2/8, p=0.074). Static compliance of the respiratory system was decreased in prone position 0.5h($28.4{\pm}7.9ml/cm$ $H_2O$ vs. $23.8{\pm}7.6ml/cm$ $H_2O$, p=0.007). The overall rate of early response(n=23) and late response(n=11) were similar(14/23 vs. 7/11, p>0.05). But patient without early response showed late response only in 25%(1/4), while patient with early response showed late response in 85.7%(6/7)(p=0.072). Five patients(22%) showed positive hemodynamic response, two of them being respiratory nonresponders. There were no differences in the baseline mean arterial pressure or the level of PEEP applied in supine between the hemodynamic responders and the hemodynamic nonresponders. Conclusions : Prone position either improved oxygenation or increased arterial pressure in significant proportion of patients with ARDS. And the respiratory response to prone position was thought to be determined in the early stage of ARDS.

  • PDF

High Response and Precision Control of Electronic Throttle Controller Module without Hall Position Sensor for Detecting Rotor Position of BLDCM

  • Lee, Sang-Hun;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.97-103
    • /
    • 2013
  • This paper describes the characteristics of Electronic Throttle Controller (ETC) module in BLDC motor without the hall sensor for detecting a rotor position. The proposed ETC control system, which is mainly consisted of a BLDC motor, a throttle plate, a return spring and reduction gear, has a position sensor with an analogue voltage output on the throttle valve instead of BLDC motor for detecting the rotor position. So the additional commutation information is necessarily needed to control the ETC module. For this, the estimation method is applied. In order to improve and obtain the high resolution for the position control, it is generally needed to change the gear ratio of the module or the electrical switching method etc. In this paper, the 3-phase switching between successive commutations is adapted instead of the 2-phase switching that is conventionally used. In addition, the position control with a variable PI gain is applied to improve a dynamic response during a transient period and reduce vibration at a stop in case of matching position reference. The mentioned method can be used to estimate the commutation state and operate the high-precision position control for the ETC module and the high response characteristics. The validity of the proposed method is examined through the experimental results.

The effects of scanning position on evaluation of cerebral atrophy level: assessed by item response theory

  • Mahsin, Md;Zhao, Yinshan
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.531-541
    • /
    • 2016
  • Cerebral atrophy affects the brain and is a common feature of patients with mild cognitive impairment or Alzheimer's diseases. It is evaluated by the radiologist or reader based on patient's history, age and the space between the brain and the skull as indicated by magnetic resonance (MR) images. A total of 70 patients were scanned in the supine and prone positions before three radiologist assessed their atrophy level. This study examined the radiologist's assessment of the cerebral atrophy level using a graded response model of item response theory (IRT). A graded response model (GRM) is fitted to our data and then item-fit and person-fit statistics are evaluated to assess the fitted model. Our analysis found that the cerebral atrophy level is better discriminated by readers in the prone position because all item slopes were greater than 2 at this position, versus the supine position where all the slope parameters were less than 1. However, the thresholds are very similar for the first reader and are quite different for the second and third readers because the scanning position affects readers differently as the category threshold estimates vary considerably between the readers..

A Method of a Nonlinear Position Control of a Pneumatic Cylinder (비선형특성 보상에 의한 공기압 실린더의 위치제어)

  • Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.58-64
    • /
    • 2000
  • A method for the position control of a pneumatic cylinder using a linearized controller is proposed. Pneumatic cylinder has highly nonlinear characteristics and modelling of the system has been difficult. Compliance of the pneumatic cylinder is materially changed according to the operating position. So, in the case that fixed gain controller obtained by a linearized model at a specified position is used, response of the cylinder should be changed according to the operating position. In order to get a designed results regardless of operating positions, a controller for compensation of the nonlinear characteristic with a linearlization compensator is designed and simulation results show that this method is appropriate for the control object.

  • PDF

Weighted fuzzy controller composed of position type fuzzy controller and velocity type fuzzy controller (위치형퍼지제어기와 속도형퍼지제어기로 구성된 퍼지 가중치 제어기)

  • 김병수;박준열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.181-183
    • /
    • 1996
  • Generally, While position type fuzzy controller has good performance in transient period, it has uniform steady state error of response. While velocity type fuzzy controller is capable of reducing steady state error of response, it is hard to develop the performance in transient period. In order to have both good performance in transient period and ability to reduce the steady state error of response, weighting fuzzy controller, which is composed of these two fuzzy controllers, is proposed. For the decision of weight to each fuzzy controller, Weighting fuzzy set is established according to the system state variables and applied to each fuzzy controller. The proposed weighted fuzzy controller has the merits of both position type fuzzy controller and velocity type fuzzy controller simultaneously.

  • PDF

A Study on the Adaptive Friction Compensator Design of a Hydraulic Proportional Position Control System (유압 비례 위치제어시스템의 적응 마찰력 보상기 설계에 관한 연구)

  • 이명호;박형배
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.77-83
    • /
    • 2003
  • This paper deals with a position control problem of a hydraulic proportional position control system using a nonlinear friction compensation control. As nonlinear friction, stiction and coulomb friction forces are considered and modeled as deadzone and external disturbance respectively. In order to compensate this nonlinearities, we designed the controller which is the adaptive friction compensator using discrete time Model Reference Adaptive Control method in this paper. Digital Signal Processing board is employed for data acquisition and manipulation. The experimental results show that response is slow and steady-state error cannot be compensated properly without friction compensation but this compensator is effective to obtain fast response and good steady-state response.

Friction Compensator Design of a Hydraulic Proportional Position Control System (유압 비례 위치제어 시스템의 마찰력 보상기 설계)

  • 이명호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.130-135
    • /
    • 1998
  • This paper deals with a position control problem of a hydraulic proportional position control system using a friction compensation control. There are many nonlinearities in hydraulic systems. With only proportional controller, response is slow and steady-state error cannot be compensated properly. Controller designed in this paper achieves fast transient response through the velocity and acceleration feedback and good steady-state response through the friction compensator. A/D and D/A board is employed for data acquisition and manipulation. The experimental results are compared with computer simulation results using Matlab.

  • PDF

Optimization of Joint Hole Position Design for Composite Beam Clamping (복합재 빔 체결을 위한 체결 홀 위치 최적화)

  • Cho, Hee-Keun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.14-21
    • /
    • 2019
  • In recent years, the use of composite structures has become commonplace in various fields such as aerospace, architecture, and civil engineering. In this study, A method is proposed to find optimal position of bolt hole for fastening of composite structure. In the case of composites, stress distribution is very complicated, and design optimization based on this phenomenon increases difficulty. In selecting the optimum position of the bolt hole, the response surface method(rsm), which is a method of optimization, was applied. A response surface was created based on design points by multiple finite element analyzes. The position of the bolt hole that minimizes the stress when bolting on the response surface was found. The distribution of the stress at the position of the optimal hole was much lower than that of the initial design. Based on the results of this study, it is possible to increase the design safety factor of the structure by appropriately selecting the position of the bolt hole according to various load types when designing the structure and civil structure.

Selection of Optimal Supporting Position to Maximize Natural Frequency of the Structure Using Frequency Response Function (주파수 응답함수를 이용한 구조물 고유진동수 극대화를 위한 최적 지지점 선정)

  • 박용화;정완섭;박윤식
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.648-654
    • /
    • 2000
  • A procedure to determine the realizable optimal positions of rigid supports is suggested to get a maximum fundamental natural frequency. a measured frequency response function based substructure-coupling technique is used to model the supported structure. The optimization procedure carries out the eigenvalue sensitivity analysis with respect to the stiffness of supports. As a result of such stiffness optimization, the optimal rigid-support positions are shown to be determined by choosing the position of the largest stiffness. The optimally determined support conditions are verified to satisfy the eigenvalue limit theorem. To demonstrate the effectiveness of the proposed method, the optimal support positions of a plate model are investigated. Experimental results indicate that the proposed method can effectively find out the optimal support conditions of the structure just based on the measured frequency response functions without any use of numerical model of the structure.

  • PDF

Position-type fuzzy controller using the accumulated error scaling factor (누적오차 조정계수를 이용한 위치형 퍼지제어기)

  • 김동하;전해진;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.177-177
    • /
    • 2000
  • In this paper, we propose a two-input two-output fuzzy controller to improve the performance of transient response and to eliminate the steady state error. The outputs of this controller are the control input calculated by position-type fuzzy controller and the accumulated error scaling factor. Here, the accumulated error scaling factor is adjusted on-line by fuzzy rules according to the current trend of the controlled process. To show the usefulness of the proposed controller, it is applied to several systems that are difficult to get satisfactory response by conventional PD controllers or PI controllers.

  • PDF