• Title/Summary/Keyword: Rheological parameters

Search Result 197, Processing Time 0.026 seconds

Thermodynamic Properties and Self Diffusions from Rheological Parameters of Eyring-Halsey Model (Eyring-Halsey 모델의 유동파라메타로부터 열역학 성질과 자체 확산)

  • Kim, Nam Jeong
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.3
    • /
    • pp.251-257
    • /
    • 2014
  • The stress relaxation of poly(methyl acrylate)-poly(acrylonitrile) copolymer samples were carried out in air and distilled water at various temperatures using the tensile tester with the solvent chamber. The rheological parameters were obtained by applying the experimental stress relaxation curves to the theoretical equation of the Eyring-Halsey non-Newtonian model. The self diffusion, hole volume, viscosities, and thermodynamic parameters of copolymer samples were calculated from rheological parameters and crystallite size in order to study of flow segments in amorphous region. It was observed that the rheological parameters of these copolymer samples are directly related to the self diffusion, hole volume, viscosities, and thermodynamic parameters of flow segments.

Self Diffusions and Rheological Properties of Polyamide Polymer Materials in Various Solvents (용매 환경에서의 폴리아미드 고분자 재료의 자체확산과 유변학적인 특성)

  • Kim, Nam Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1050-1059
    • /
    • 2019
  • The self diffusion, hole volume, and flow thermodynamic parameters of polyamide fibers were calculated from rheological parameters and crystallite size in order to study of flow segments in amorphous region. The stress relaxation of polyamide filament fibers were carried out in air and various solvents at various temperatures using the tensile tester with the solvent chamber. The rheological parameters were obtained by applying the experimental stress relaxation curves to the theoretical equation of the Ree-Eyring and Maxwell non-Newtonian model. It was observed that the rheological parameters of these polyamide filament fibers are directly related to the relaxation spectra, self diffusion, viscosities, and activation energies of flow segments.

Thixotropic Equation and Rheological Parameters on Non-Newtonian Flow Mechanism (비 뉴톤 유동 메카니즘에서 틱소트로피 식과 유변 파라메타)

  • Kim, Nam Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.386-393
    • /
    • 2015
  • The rheological properties of complex materials such as colloid dispersion show complicated non-Newtonian flow phenomena when they are subjected to shear flow. These flow properties are controlled by the characteristics of flow units and the interactions among the flow segments. The rheological parameters of relaxation time $({\beta}_2)_0$, structure factor $C_2$ and shear modulus $X_2/{\alpha}_2$ for various thixotropic flow curves was obtained by applying thixotropic equation to flow curves. The variations of rheological parameters are directly related to non-Newtonian flows, viscosities and activation energies of flow segments.

Stress Relaxation of Poly(methyl acrylate)-Poly(acrylonitrile) Copolymers (Poly(methyl acrylate)-Poly(acrylonitrile) 공중합체의 응력완화)

  • Kim, Nam-Jeong
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.223-230
    • /
    • 2012
  • The rheological parameters of poly(methyl acrylate)-poly(acrylonitrile) copolymers were obtained by applying the experimental stress relaxation curves to the theoretical equation of the Eyring-Halsey non-Newtonian model. The experimentals of stress relaxation were carried out using the tensile tester with the solvent chamber. The determination of rheological parameters was performed from computer calculation. It was observed that the rheological parameters of these copolymer samples are directly related to the self diffusions and viscosities and activation energies of flow segments.

Analysis of Rheological Parameters for Determining Segregation of Mid-Range Workability Concrete (중유동 콘크리트의 재료분리 경계 판단을 위한 레올로지 정수 범위 분석)

  • Lee, Yu Jeong;Kim, Young Ki;Han, Dong Yeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.142-143
    • /
    • 2021
  • The purpose of this study is to analyze the extent of the rheology parameters at the segregation boundary of mid-range workability concrete. In addition, it was intended to present the extent of the rheology parameters of the normal strength concrete with segregation resistance using the determination of segregation occurrence of concrete and the use of the rheology parameters. However, it was confirmed that segregation occurs even if the measured rheology parameters is in the range of the suggested rheology parameters. Therefore, it is determined that the conditions under which segregation occurs will provide fundamental data that can be rheological defined. Additional studies are also needed on the relationship between rheological parameters and segregation.

  • PDF

Non-Newtonian Rheological Properties of Poly(vinyl alcohol) hydrogel (Poly(vinyl alcohol) hydrogel의 비 뉴톤 유변학적인 성질)

  • Kim, Nam-Jeong
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.323-328
    • /
    • 2009
  • The rheological properties of complex materials such as polymer melts show complicated non-Newtonian flow phenomena when they are subjected to shear flow. These flow properties are controlled by the characteristics of flow units and the interactions among the flow segments. The non-Newtonian flow curves of poly(vinyl alcohol) hydrogel were obtained in various concentrations and temperatures by using a cone-plate rheometer. By applying non-Newtonian flow equation to the flow curves for PVA hydrogel samples, the rheological parameters were obtained. The PVA hydrogel samples are shear thinning under increasing shear rate modes which result in thixotropic behavior.

Modeling the effects of additives on rheological properties of fresh self-consolidating cement paste using artificial neural network

  • Mohebbi, Alireze;Shekarchi, Mohammad;Mahoutian, Mehrdad;Mohebbi, Shima
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.279-292
    • /
    • 2011
  • The main purpose of this study includes investigation of the rheological properties of fresh self consolidating cement paste containing chemical and mineral additives using Artificial Neural Network (ANN) model. In order to develop the model, 200 different mixes are cast in the laboratory as a part of an extensive experimental research program. The data used in the ANN model are arranged in a format of fourteen input parameters covering water-binder ratio, four different mineral additives (calcium carbonate, metakaolin, silica fume, and limestone), five different superplasticizers based on the poly carboxylate and naphthalene and four different Viscosity Modified Admixtures (VMAs). Two common output parameters including the mini slump value and flow cone time are chosen for measuring the rheological properties of fresh self consolidating cement paste. Having validated the model, the influence of effective parameters on the rheological properties of fresh self consolidating cement paste is investigated based on the ANN model outputs. The output results of the model are then compared with the results of previous studies performed by other researchers. Ultimately, the analysis of the model outputs determines the optimal percentage of additives which has a strong influence on the rheological properties of fresh self consolidating cement paste. The proposed ANN model shows that metakaolin and silica fume affect the rheological properties in the same manner. In addition, for providing the suitable rheological properties, the ANN model introduces the optimal percentage of metakaolin, silica fume, calcium carbonate and limestone as 15, 15, 20 and 20% by cement weight, respectively.

The influence of the rheological parameters on the dispersion of the flexural waves in a viscoelastic bi-layered hollow cylinder

  • Kocal, Tarik;Akbarov, Surkay D.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.577-601
    • /
    • 2019
  • The paper investigates the influence of the rheological parameters which characterize the creep time, the long-term values of the mechanical properties of viscoelastic materials and a form of the creep function around the initial state of a deformation of the materials of the hollow bi-layered cylinder on the dispersion of the flexural waves propagated in this cylinder. Constitutive relations for the cylinder's materials are given through the fractional exponential operators by Rabotnov. The dispersive attenuation case is considered and numerical results related to the dispersion curves are presented and discussed for the first and second modes under the first harmonic in the circumferential direction. According to these results, it is established that the viscosity of the materials of the constituents causes a decrease in the flexural wave propagation velocity in the bi-layered cylinder under consideration. At the same time, the character of the influence of the rheological parameters, as well as other problem parameters such as the thickness-radius ratio and the elastic modulus ratio of the layers' materials on the dispersion curves, are established.

Changes in Rheological Properties of Culture Broth During the Biopolymer Production by Bacillus sp (Bacillus sp.에 의한 생물 고분자의 발효 중 배양액의 유변학적 특성 변화)

  • 이신영;이주하
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.340-346
    • /
    • 1996
  • Variations of rheological properties of culture broth during the production of biopolymer by an alkali tolerant Bacillus sp. were investigated. Correlations among the rheological characteristics of culture broth, cell growth and biopolymer production were examined. Rheology of the culture broth changed in the course of fermentation. The culture broth showed a non-Newtonian flow behavior, as the viscosity and pseudoplasticsity increased during the cultivation. The rheological parameters such as flow index, consistency index, yield stress and apparent viscosity during the cultivation were not influenced by the cell growth, but significantly related to the biopolymer synthesis. Changes in the rheological parameters of the broth were affected not only by the biopolymer concentration, but also by the progress of fermentation. Some rheological parameters showed maximum values just before the completion of biopolymer production and substrate consumption. Hence, it was shown that the rheological characteristics of the culture broth could be used as a good indicator for the detection of the progress or completion of fermentation.

  • PDF

Influence of preparation parameters on rheological behavior and microstructure of aqueous mixtures of hyaluronic acid/poly(vinyl alcohol)

  • Park Hyun-Ok;Hong Joung Sook;Ahn Kyung Hyun;Lee Seung Jong;Lee Seong Jae
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.2
    • /
    • pp.79-85
    • /
    • 2005
  • Aqueous mixtures of hyaluronic acid and poly(vinyl alcohol) system and hydrogels thereof were introduced to obtain new bioartificial materials that have excellent mechanical properties, biocompatibility and enhanced rheological properties. The interactions between hyaluronic acid and poly(vinyl alcohol) and/or borax were investigated by rheological measurements. Preparation parameters of the aqueous mixtures were mixture composition, the degree of hydrolysis of poly(vinyl alcohol) and borax concentration. From the rheological behavior, it could be deduced that the key factor of the interaction between hyaluronic acid and poly(vinyl alcohol) was the hydrogen bonding between them and the effect was pronounced with borax. Enhanced viscosity was observed at the composition of $20wt\%$ of hyaluronic acid solution and $80wt\%$ of poly(vinyl alcohol) and borax solution. Rheological properties were influenced by the degree of hydrolysis of poly(vinyl alcohol) and borax concentration. As the degree of hydrolysis and borax concentration increased, rheological properties increased due to the increased hydrogen bonding and networking of hyaluronate aggregates. Physical hydrogels from hyaluronic acid and poly(vinyl alcohol) were prepared and the composition dependence of the gels was rheologically investigated as well.