• Title/Summary/Keyword: Rhodobacter sphaeroides

Search Result 72, Processing Time 0.029 seconds

Isolation of Hydrogen Evolution Photosynthetic Bacteria Rhodobacter sphaeroides KS 56 (수소 생성 광합성 세균 Rhodobacter sphaeroides KS 56 분리)

  • 이은숙;권애란
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.4
    • /
    • pp.549-552
    • /
    • 1997
  • A purple non-sulfur photosynthetic bacteria which evolved molecular hydrogen efficiently from glucose in the presence of low concentration of NH4+ under light illuminated anaerobic condition was isolated from mud samples in Korea. This bacteria was identified on Rhodobacter sphaeroides KS 56 based on the morphological, cultural and physiological characteristics.

  • PDF

Hydrogen Evolution by Photosynthetic Bacteria Rhodobacter sphaeroides KS56 (광합성 세균 Rhodobacter sphaeroidea KS56에 의한 수소 생성)

  • 이은숙;권애란
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.7 no.3
    • /
    • pp.325-329
    • /
    • 1997
  • The optimum temperature and pH for growth and hydrogen evolution of the organism were observed at 30-35$^{\circ}C$, and around pH 7.0, respectively. The efficiency of various sugars and organic acids on hydrogen evolution as electron donors by the organism was examined. Among them, higher rates of hydrogen evolution were observed with sugars such as glucose or fructose and organic acids such as alate or pyruvate. From the result, it was evident that Rhodobacter sphaeroides KS56 had a great capacity of utilizing various kinds of reduced carbon compounds as electron donors.

  • PDF

Isolation and Characterization of $\beta$-Hydroxybutyrate Dehydrogenase- deficient Mutant of Rhodobacter sphaeroides 2.4.1

  • Kho, Dohng-Hyo;Lee, Jeong-Kug
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.360-362
    • /
    • 1997
  • A transposon Tn5 mutant of Rhodobacter sphaeroides 2.4.1 was isolated for its impaired ability of growth on minimal medium containing ${\beta}$-hydroxybutyric acid as a sole carbon source. The mutant, R. sphaeroides S7 showed approximately 6-fold decrease in ${\beta}$-hydroxybutyrate dehydrogenase activity compared with that of wild type. In R. sphaeroides S7 the Tn5 was located in DNA region corresponding to a 4.2-kb EcoRI DNA fragment of R. sphaeroides 2.4.1 chromosome.

  • PDF

Study on the Excited Energy Transfer in Light-harvesting Complex (LH2) of Rhodobacter sphaeroides

  • Liu, Yuan;Guo, Lijun;Qian, Shixiong;Xu, Chunhe
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.359-361
    • /
    • 2002
  • A green mutant of Rhodobacter sphaeroides 60I was acquired by chemical induction. The blue-shifted of the carotenoid absorption was found in the Light-harvesting complex II (LH2) of the mutant. With the excitation at different wavelength, we observed that the evolution of excited-state dynamics in LH2 of Rhodobacter sphaeroides 60I. The dynamical traces demonstrate a dominant absorption followed concomitantly by an ultrafast transmission increase and decay with 818nm excitation.

  • PDF

Relationship of the Redox State of Pyridine Nucleotides and Quinone Pool with Spectral Complex Formation in Rhodobacter sphaeroides 2.4.1 (Rhodobacter sphaeroides 2.4.1 내의 pyridine nucleotide와 quinone pool의 redox 상태와 광합성기구의 합성과의 상관관계)

  • Ko, In-Jeong;Oh, Jeong-Il
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.852-858
    • /
    • 2009
  • The homeostasis of the pyridine nucleotide pool [NAD(P)H and NAD(P)$^+$] is maintained in Rhodobacter sphaeroides mutant strains defective in the cytochrome bci complex or the cytochrome c oxidases in terms of its concentration and redox state. Aerobic derepression of the puf operon, which is under the control of the PrrBA two-component system, in the CBB3 mutant strain of R. sphaeroides was shown to be not the result of changes in the redox state of the pyridine nucleotides and the ubiquinone/ubiquinol pool. Using the bc$_1$ complex knock-out mutant strain of R. sphaeroides, we clearly demonstrated that the inhibitory effect of cbb$_3$, oxidase on spectral complex formation is not caused indirectly by the redox change of the ubiquinone/ubiquinol pool.

Effect of 850 nm near-infrared light emitting diode irradiation on the production of 5-aminolevulinic acid in Rhodobacter sphaeroides (Rhodobacter sphaeroides에서 5-aminolevulinic acid 생산에 대한 850 nm 근적외선 발광다이오드 조사 효과)

  • Mo, SangJoon
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.217-223
    • /
    • 2021
  • 5-aminolevulinic acid (ALA) is a representative photosensitizer used in numerous fields including cancer diagnosis and treatment. In this study, experiments were conducted to optimize the growth of Rhodobacter sphaeroides and production of ALA through LED irradiation of various wavelengths, addition of organic acid precursors of ALA, and changes in glucose concentration. After 72 h cultivation, the 850 nm wavelength LED irradiated at the same light intensity as the incandescent lamp increased the growth of R. sphaeroides and the production of ALA about 1.5- and 1.8-fold as compared with the control, respectively (p <0.0001 and p <0.0001). As a result of culturing R. sphaeroides by irradiating an LED with a wavelength of 850 nm after adding organic acid to the final concentration of 5 mM in culture medium, the production of ALA was increased about 2.8-fold in medium supplemented with pyruvic acid compared with the control (p <0.0001). In addition, the growth of the strain and the production of ALA were increased about 2.9- and 3.4-fold in medium supplemented with 40 mM glucose compared to the control which added only 5 mM pyruvic acid, respectively (p <0.0001 and p <0.0001). The yield of ALA per cell dry mass was about 1.4 folds higher than that of the control in 20 and 40 mM glucose, respectively (p <0.001). In conclusion, the growth of R. sphaeroides and production of ALA were increased by 850 nm wavelength LED irradiation. It also optimized the growth of R. sphaeroides and production of ALA through organic acid addition and glucose concentration changes.

Expression Analysis of phbC Coding for Poly-3-hydroxybutyrate (PHB) Synthase of Rhodobacter sphaeroides

  • Kho, Dhong-Hyo;Yang, Jai-Myung;Kim, Kun-Soo;Lee, Jeong-Kug
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.310-316
    • /
    • 2001
  • Poly-3-hydroxybutyrate (PHB) synthase catalyzed the last enzymic step to synthesize the intracellular PHB of Rhodobacter sphaeroides. No PHB was detected when the phbC coding for PhB synthase was interrupted, and its expression was regulated at the level of transcription. The cellular PHB content increased about four- to six-fold during the growth transition from the exponential to the early stationary phase under both aerobic and photoheterotrophic conditions. The PHB content during the aerobic growth seemed to be determined by the PhB synthase activity. However, the PHB synthase activity of photoheterotrophically grown cells did not correlate with the PhB content, suggesting a photoheterotrophic regulation different from the aerobic control. Thus, the PHB content of R. sphaeroides was regulated at the transcription level only under aerobic conditions.

  • PDF

Characterization of Enzymes Against Oxygen Derivatives Produced by Rhodobacter sphaeroides D-230 (Rhodobacter sphaeroides D230이 생성하는 산소 유도체에 작용하는 효소의 특성)

  • 김동식;이혜주
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • The activities of enzymes that act on oxygen derivatives in Rhodobacter sphaeroides D-230 were investigated under various culture conditions. Intracellular SOD activity from the cells grown in aerobic or anaerobic culture conditions was highest at pH 7.0 and pH 8.0, respectively. On the other hand, extracellular SOD activity was highest at pH 6.0. Catalase activity was highest at neutral pH in both cases. Growth of R. sphaeroides D-230 in aerobic or anaerobic culture conditions was inhibited by methyl viologen. As R. sphaeroides D-230 was cul-tured aerobically, SOD activity was increased about 2-fold by addition of iron ion. But $Mn^+2$ had little effect on the SOD activity of R. sphaeroides D-230 grown in aerobically. NaCN, the inhibitor of Cu$.$Zn-SOD, did not inhibit SOD activity. But, $NaN_3$, the inhibitor of Mn-SOD, inhibited SOD activity in anaerobic cultures con-dition. Therefore, R. sphaeroides D-230 produce Mn-SOD in anaerobic condition, although Fe-Sod is produced in aerobic condition. The activity of catalase was induced by methyl viologen, however, extremely inhibited by NaCN and $NaN_3$.

Bacteriocins in Purple Nonsulfur Bacteria (홍색 비유황 광합성세균에서의 Bacteriocins에 관한 연구)

  • Lee, Sang Seob;Oh, Tae Jeong;Lee, Hyun Soon
    • Korean Journal of Microbiology
    • /
    • v.30 no.4
    • /
    • pp.265-268
    • /
    • 1992
  • In this study, we want to detect bacteriocin production in purple nonsulfur bacteria. As a results, it was showed that bacteriocin produced between some strains of Rhodobacter capsulatus, Rhodobacter sphaeroides and Rhodocyclus gelatinosus. In particular, it was appeared that cell membrane-bound bacteriocin was also produced by Rhodobacter capsulatus ATCC 17016.

  • PDF

The Role of NifA and PrrA on the Expression of nif Gene in Rhodobacter sphaeroides (Rhodobacter sphaeroides의 nif 유전자의 발현에 대한 NifA와 PrrA의 작용)

  • Son, Myung-Hwa;Kim, Min-Ju;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.21 no.9
    • /
    • pp.1139-1147
    • /
    • 2012
  • To find out the growth conditions for the maximum activity of nitrogenase which catalyzes nitrogen fixation in Rhodobacter sphaeroides, the promoter activities of nifA and nifH were analyzed and the results indicated that expression of both nifA and nifH was increased in response to deprivation of both O2 concentration and nitrogen source. The nifA mutant was constructed by deleting the gene to investigate the effect of NifA, the transcriptional regulator, on the nifH and nifA expression in R. sphaeroides. Analysis of expression of nif genes using the nifA::lacZ and nifH::lacZ fusions in the nifA mutant revealed that NifA acts as a positive activator for nifH and an autoregulator in its own expression. The promoter activities of nifA and nifH in the prrA mutant grown under anaerobic and ${NH_4}^+$-free conditions were derepressed, comparing with those of the wild-type grown under the same conditions, indicating that the prrA product acts as a positive regulator in expression of nifA and nifH.