• Title/Summary/Keyword: Rice husk biochar

Search Result 10, Processing Time 0.028 seconds

Evaluating germination of lettuce and soluble organic carbon leachability in upland sandy loam soil applied with rice husk and food waste biochar (왕겨 바이오차 및 음식물쓰레기 바이오차가 밭 사양토에서 상추발아 및 수용성 유기탄소 용출에 미치는 영향 평가)

  • Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae;Sonn, Yeon-Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.369-377
    • /
    • 2014
  • This study was carried out to evaluate the effect of rice husk (RHB) and food waste biochar (FWB) on upland soil with sandy loam texture, in terms of physico-chemical analysis, lettuce seed germination test, and orgainc carbon leaching experiment. RHB and FWB had different physico-chemical properties each other. Carbon to nitrogen ratio (C/N ratio) of RHB was 32, showing two times higher than that of FWB. FWB had high salt and heavy metal content, compared to RHB. This is probably due to different ingredients and production processing between two biochars each other. Results of germination test with Lettuce showed lower germination rate when FWB was applied because of higher salt concentration compared to control and RHB. Organic carbon leaching test using saturated soil column (${\Phi}75{\times}h75mm$) with $10MT\;ha^{-1}$ biochar application rate, showed higher saturated hydraulic conductivity in rice husk biochar treatment column, compared to control and food waste biochar treatment. The highest total organic carbon concentration in column effluent was lower than those in both of rice husk biochar and food waste biochar, whereas the differences was negligible after 9 pore volumes of effluent. Consequently, biochars from byproducts such as rice husk and food waste in sandy loam textured upland soil could enhance a buffer function such as reduction of leaching from soil, but the harmful ingredient to crops such as high salt and heavy metals could limit the agricultural use of biochars.

Effects of biochar-based fertilizer on ammonia volatilization under controlled conditions

  • Yun-Gu Kang;Jae-Han Lee;Jun-Yeong Lee;Jun-Ho Kim;Taek-Keun Oh
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.437-446
    • /
    • 2023
  • As the interest in sustainable and environmentally friendly agriculture continues to grow, there is a corresponding increase in organic fertilizers utilization. However, studies on ammonia (NH3) emissions, which are primarily generated in the agricultural sector, by organic fertilizers are lacking. Additionally, the reliance on imported ingredients in the production of organic fertilizers hinders the widespread adoption of organic fertilizers. This study aims to evaluate NH3 volatilization by incorporating rice husk biochar into organic fertilizers. The study also aims to assess whether domestically produced rice husk biochar can serve as a viable substitute for imported ingredients. Here, the dynamic chamber method was used under controlled conditions. Results show that inorganic fertilizers readily undergo hydrolysis, thereby rapidly generating significant amounts of NH3, particularly in the initial stages. In contrast, organic fertilizers decompose gradually, leading to relatively long-term NH3 emissions. The incorporation of rice husk biochar into organic fertilizers demonstrated diminished daily NH3 emissions compared to those from commercial organic fertilizers, resulting in decreased total NH3 volatilization. These findings show that the combination of rice husk biochar can reduce NH3 volatilization and serve as an alternative to imported ingredients for organic fertilizers. The results of this study can be utilized as fundamental information for the assessment of biochar as a potential ingredient for organic fertilizers.

Comparative study of individual and co-application of biochar and wood vinegar on growth of perilla (Perilla frutescens var.) and soil quality

  • Yun-Gu Kang;Nam-Ho Kim;Jun-Ho Kim;Da-Hee Ko;Jae-Han Lee;Jin-Hyuk Chun;Taek-Keun Oh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.357-366
    • /
    • 2022
  • Biochar can be obtained by using various types of biomass under an oxygen-limited condition. Biochar can be utilized for various applications such as soil improvement, waste management, growth promotion, and adsorption. Wood vinegar is produced by the process of pyrolysis wood biomass and is used as a growth promoter, for soil improvement, and as a feed additive. When wood vinegar is treated on soil, it acts to control soil pH, improve nutrient availability, and alleviate N2O and NH3 volatilization. The objective of this study was to evaluate the effect of biochar and wood vinegar on the growth of perilla and soil quality. The experiment was conducted by using a Wagner pot (1·5,000 a-1) in a glass greenhouse. The biochar was produced by pyrolysis at 450℃ for 30 minutes using rice husk and rice straw. Wood vinegar was diluted to 1 : 500 (v·v-1) and used in this experiement. In the results of a cultivation experiment, co-application of biochar and wood vinegar enhanced the growth of perilla. In particular, rice husk biochar affected the leaves of the perilla, and rice straw biochar influenced the stems of the perilla. In addition, soil quality after treatment with biochar and wood vinegar applied together was highest compared to other units. Therefore, it is anticipated that co-application of biochar and wood vinegar will be more productive and improve soil quality compared to individual utilization of biochar and wood vinegar.

Comparative Evaluation of Methylene Blue and Humic Acids Removal Efficiency Using Rice Husk Derived Biochars and Powdered Activated Carbon (쌀겨 바이오차와 분말 활성탄을 이용한 메틸렌 블루와 휴믹산 제거 효율 비교)

  • Lee, Juwon;Jeong, Eunju;Lee, Jungmin;Lee, Yong-Gu;Chon, Kangmin
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.483-492
    • /
    • 2021
  • This study evaluated the removal efficiencies of methylene blue (MB) and humic acids (HA) using a rice husk (RH) biochar and powdered activated carbon (PAC). The pseudo-second-order model better presented the adsorption of MB and HA onto a RH biochar than the pseudo-first-order model. Furthermore, better description of the adsorption behavior of MB and HA by the Langmuir isotherm model (R2 of the RH biochar: MB = 0.986 and HA = 0.984; R2 of PAC: MB = 0.997 and HA = 0.989) than the Freundlich isotherm model (R2 of the RH biochar: MB = 0.955 and HA = 0.965; R2 of PAC: MB = 0.982 and HA = 0.973) supports the assumption that monolayer adsorption played key roles in the removal of MB and HA using the RH biochar and PAC. Batch experiments were performed on the effects of dosage, temperature, and pH. For all experiments, PAC showed higher efficiencies than RH biochar and MB adsorption efficiencies were higher than those of HA. Adsorption efficiencies increased with increasing amounts of adsorbents and temperature. As the pH increased, adsorption efficiencies of MB were increased while adsorption efficiencies of HA were decreased.

Effects of nutrient-coated biochar amendments on the growth and elemental composition of leafy vegetables

  • Jun-Yeong Lee;Yun-Gu Kang;Jun-Ho Kim;Taek-Keun Oh;Yeo-Uk Yun
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.967-976
    • /
    • 2023
  • Biochar is emerging as a promising substance for achieving carbon neutrality and climate change mitigation. It can absorb several nutrients via ion bonding on its surface functional groups, resulting in slow dissociation of the bonds. Biochar, like organic fertilizers, contributes to sustainable nutrient management. The purpose of this study was to investigate the effects of nutrient-coated biochar amendments on leafy vegetables production and soil fertility. The nutrient-coated biochar was produced by soaking rice husk biochar in a nutrient solution containing nitrogen (N), phosphorus, and potassium for 24 hours. Nutrient-coated biochar and organic fertilizers were applied to soil at a rate of 120 kg·N·ha-1. The growth components of the leafy vegetables showed that nutrient-coated biochar led to the highest fresh weight (FW) of both lettuce and kale (i.e., 146.67 and 93.54 g·plant-1 FW, respectively). As a result, nutrient-coated biochar amendments led to superior yield compared to the control treatment and organic fertilization. The elemental composition of leafy vegetables revealed that soil amended with nutrient-coated biochar resulted in higher nutrient contents, which was attributed to the high nutrient contents supplied by the rice husk biochar. Soil amendment with nutrient-coated biochar positively enhanced the soil fertility compared to amendment with organic fertilizer. Therefore, nutrient-coated biochar is a promising substance for enhancing agronomic performance of leafy vegetables and improving soil fertility.

Effects of application rate and pH of carbonized rice husk on the reduction of NH3 volatilization and soil quality

  • Yun-Gu Kang;Jae-Han Lee;Jun-Yeong Lee;Taek-Keun Oh
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.2
    • /
    • pp.231-239
    • /
    • 2023
  • Ammonia (NH3) emitted from the use of fertilizers during agricultural practice generates particulate matter and odors. The application of carbonized rice husk, an eco-friendly material, is one of the measures used to reduce NH3. The objective of this study was to evaluate the effect of the application rate and pH of carbonized rice husk on NH3 emissions and soil quality. An experiment to assess NH3 emissions was performed in a glasshouse using a static chamber method. The pH of the carbonized rice husk was divided into acidic, neutral, and basic groups, and the carbonized rice husk application rates were 1, 3, and 5% of the soil weight. NH3 emissions showed a sharp increase within three days after the inorganic fertilizer was applied. Subsequently, NH3 emissions decreased rapidly after basal fertilization compared to primary and secondary top-dressing. When carbonized rice husks were applied to soil, NH3 emissions decreased in all treatments, and neutral carbonized rice husk was the most effective in comparison with acidic and basic carbonized rice husk. The application rate of carbonized rice husk and NH3 emissions showed a negative correlation, and the lowest emissions were found in units with a 5% application rate. Also, there was no statistically significant difference between NH3 emissions according to the application rate of carbonized rice husk, and when carbonized rice husks were applied at a 5% rate, soil OM increased excessively. Therefore, it is recommended to apply only 1% neutral carbonized rice husk to most effectively reduce NH3 emissions in the soil.

Behavior Changes of Earthworm from Soils Amended with Biochar - Avoidance and Productivity - (바이오차르 토양 투입에 따른 지렁이의 행동변화 연구 - 회피 및 생산성 변화 -)

  • Kim, You Jin;Yang, Seung Hoon;Kim, Seo Yeon;Yoon, Hong Seok;Yoo, Ga Young
    • Journal of Climate Change Research
    • /
    • v.5 no.4
    • /
    • pp.277-284
    • /
    • 2014
  • Biochar application to soil is widely known to have effects of climate change mitigation and soil quality improvement. However, effects of biochar on soil ecosystem are not always positive and some biochars are reported to contain toxic materials which might influence soil ecosystem. In this context, this study aims to investigate behavioral changes of earthworms(Eisenia fetida, Eisenia andrei) in response to different application rates of biochar to artificial soil. Treatment included two types of biochars made from rice husk (RH_Char) and wastewater sludge (SL_Char) with 1% and 10% application rates, respectively. Avoidance test revealed that earthworms did not avoid SL_Char treatments at 1% and 10%, while they rather moved to the RH_Char treatments probably due to higher labile carbon content(Hot water extractable carbon) of the RH_Char. The HWC content of RH_Char was 4 times higher than that of the SL_Char. Results of reproduction test showed that the survival rates, number of juveniles and number of cocoons were not influenced by biochar application except for the treatment of SL_Char at 10% rate. In the SL_Char 10% treatment, fatality was approximately 3.3 times as high as the control and the number of cocoons was 1.3 times higher in the same treatment than the control, indicating that earthworms were under environmental stress. The possible explanation for the stress condition was related to higher Cd, Ni, Cr, and As contents in the SL_Char. Overall results imply that biochar application at low rate might not change earthworms' behavior for the short term, while the reproduction behavior might be negatively influenced under the high application rate.

Effect of Continuous Biochar Use on Soil Chemical Properties and Greenhouse Gas Emissions in Greenhouse Cultivation (시설재배지에서 바이오차 연용이 토양의 화학적 특성 및 온실가스 배출에 미치는 효과)

  • Jae-Hyuk Park;Dong-Wook Kim;Se-Won Kang;Ju-Sik Cho
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.435-443
    • /
    • 2023
  • Global concern over climate change, driven by greenhouse gas emissions, has prompted widespread interest in sustainable solutions. In the agricultural sector, biochar has emerged as a focal point for mitigating these emissions. This study investigated the impact of continuous biochar application on CO2 and N2O emissions during the spring cabbage cultivation period. Greenhouse gas emissions in the biochar treatment groups (soils treated with 1, 3, and 5 tons/ha of rice husk biochar) were compared to those in the control group without biochar. During the spring cabbage cultivation period in 2022, the total CO2 emissions were in the range of 71.6-119.0 g/m2 day, and in 2023, with continuous biochar application, they were in the range of 71.6-102.1 g/m2 day. The total emissions of N2O in 2022 and 2023 were in the range of 11.7-23.7 and 7.8-19.9 g/m2 day, respectively. Overall, greenhouse gas emissions decreased after biochar treatment, confirming the positive influence of biochar on mitigating greenhouse gas release from the soil. Nevertheless, further research over an extended period exceeding five years is deemed essential to delve into the specific mechanisms behind these observed changes and to assess the long-term sustainability of biochar's impact on greenhouse gas dynamics in agricultural settings.

Evaluation of Water Absorption Speed for Litter Materials to Improve the Water Control Ability of Livestock Litter (우사의 수분조절능력 향상을 위한 깔짚소재별 수분흡수속도 평가)

  • Rho, Jun-Suk;Lee, Jae-Hoon;Lee, Su-Lim;Park, Jong-Hwan;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • BACKGROUND: The most common litter materials used in South Korea are sawdust, rice husk, etc. Recently, the cost of litter has been steadily rising, and the maturity test has been strengthened. For this reason, new litter materials are needed for better water control ability to solve the problems. The object of this study was to evaluate the water absorption properties for litter materials. METHODS AND RESULTS: The volumetric water capacity according to the addition of cow manure was investigated to calculate the water absorption speed of litter materials (sawdust, peatmoss, cocopeat, and biochar). The water absorption speed constant (-K) in the first stage was high in the order of cocopeat (0.1190), sawdust (0.0961), biochar (0.0762), and peatmoss (0.0523). The optimal period of the litter use was in the following order: peatmoss (48d), biochar (42d), sawdust (30d), and cocopeat (24d). The water absorption rate (%) of the used litters was high in the order of biochar ≈ cocopeat, sawdust, and peatmoss, which was significantly correlated with the water absorption speed of the first stage. CONCLUSION(S): Considering the water absorption speed and water absorption rate, biochar and peatmoss were found to be the best and optimal litter materials among the tested materials. These litter materials can be used as water control agents in livestock facilities.

Application Effects of Organic Fertilizer Utilizing Livestock Horn Meal as Domestic Organic Resource on the Growth and Crop Yields (국내산 유기자원 우각을 활용한 유기질비료의 작물 생육 및 수량에 미치는 영향)

  • Jang, Jae-Eun;Lim, Gab-June;Lee, Jin-Gu;Yoon, Seuong-Hwan;Hong, Sang Eun;Shin, Ki Hae;Kang, Chang-Sung;Hong, Sun-Seong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.19-30
    • /
    • 2019
  • Objective of this study was to develop an organic fertilizer utilizing domestic livestock horn meal and to investigate the application effect of rice and eggplant. The possibility of utilization of livestock horn meal as an organic resource to replace imported expeller cake fertilizer was examined. In order to select domestic organic resources with high nitrogen content, 8 kinds of organic matter such as chicken manure, fish meal, soybean meal, sesame meal, perilla meal, blood meal, livestock horn meal, and beer sludge were analyzed and organic resources with high nitrogen content were selected. In addition, the conditions for the production of organic fertilizers that can be used in organic agriculture were established by mixing of the rice husk biochar and the rice bran as the supplements with the raw materials for mixing ratios. The content of total nitrogen (T-N) in the livestock horn meal was 12.0 %, which was the next low in 13.5 % blood meal. The content of total nitrogen was 5.9 ~ 7.9 % in fish meal and oil cakes. Total nitrogen content of non-antibiotic chicken manure for organic farming was 3 % and nitrogen content in beer sludge was 3.5 %. Organic fertilizer was produced by using biochar, rice bran as a main ingredient of non-antibiotic chicken manure, livestock horn meal and beer sludge. Compared to nitrogen content (4.0 to 4.2 %) of imported expeller cake fertilizer (ECF), the nitrogen content of organic fertilizer utilizing domestic livestock horn meal is as high as 7.5 %. The developed organic fertilizer is met as Zn 400 mg/kg, Cu 120 mg/kg the quality of organic agricultural materials such as or less. To investigate the effect of fertilizer application on the crops, prototypes of developed organic fertilizer were used for the experiment under selected conditions. As a result of application the developed organic livestock horn meal fertilizer (LHMF) for cultivation of the rice and eggplant, the application quantity of the developed organic LHMF 100 % was decreased by 40 % compared to that of the mixed expeller cake fertilizer (MECF). The application of LHMF, which refers to the application rate corresponding to the nitrogen fertilization recommended by the soil test, was reduced by 40% compared to the application rate of MECF, but the same results were obtained in crop growth and yield. The selection of a new high concentration nitrogen source utilizing domestic organic resources and the development of organic fertilizer is the starting point of the research for substitution of imported ECF using domestic local resources at the present time that the spread of eco-friendly agriculture is becoming increasingly important. If it is expanded in the future, it is expected to contribute to the stable production of eco-friendly agricultural products.