• Title/Summary/Keyword: Ridge augmentation

Search Result 135, Processing Time 0.02 seconds

Alveolar ridge augmentation for implant placement (임플란트식립을 위한 치조제증대술)

  • Yu, Sang-Joun
    • The Journal of the Korean dental association
    • /
    • v.57 no.12
    • /
    • pp.768-777
    • /
    • 2019
  • Alveolar bone resorption are unpredictable and always occur after tooth extraction. Such bone resorption causes insufficient alveolar ridge which make implant placement difficult. There are many techniques to increase the alveolar ridge. Representative procedures include ridge split, guided bone regeneration, bone graft using autogenous block bone, and alveolar distraction. In each procedure, there are indications and complications. Depending on the shape and the width of bone defects, we can choose procedures for horizontal bone augmentation and vertical bone augmentation.

  • PDF

RIDGE AUGMENTATION USING OF HARD TISSUE $REPLACEMENT(HTP^{TM})$;A CASE REPORT (치조제 증강을 위한 $HTR^{TM}$ 중합체 이식후 치유과정;증례보고)

  • Kim, Su-Gwan;Lim, Sung-Chul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.1
    • /
    • pp.83-85
    • /
    • 2000
  • The purpose of this study is to evaluate the effect of $HTR^{TM}$ (hard tissue replacement, Bioplant Inc, U.S.A) polymer on short-term healing as a grafting material for alveolar ridge augmentation. A 48-year-old female presented insufficient bone height and width for the placement of implants. $HTR^{TM}$ polymer was used for ridge augmentation. Bone biopsy was harvested 8 months after the ridge augmentation procedure. $HTR^{TM}$ polymer displayed rapid bone regeneration and mature lamellar and trabecular bone redevelopment. Clinical and histologic observation from the treatment of the patient presented suggest that $HTR^{TM}$ polymer seems to be a appropriate material for alveolar ridge augmentation.

  • PDF

Vertical and Horizontal Ridge Augmentation Using Autogenous Tooth Bone Graft Materials: Case Report (자가치아골이식재를 이용한 치조능 수직 및 수평증대술: 증례보고)

  • Kim, Young-Kyun;Kim, Su-Gwan;Um, In-Woong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.2
    • /
    • pp.166-170
    • /
    • 2011
  • Horizontal and vertical ridge augmentation was performed using autogenous tooth bone graft block and powder in 44-year old male patient. Excellent bony healing was obtained 2~4 months after ridge augmentation. Implant treatment was performed successfully.

Lateral alveolar ridge augmentation procedure using subperiosteal tunneling technique: a pilot study

  • Kakar, Ashish;Kakar, Kanupriya;Sripathi Rao, Bappanadu H.;Lindner, Annette;Nagursky, Heiner;Jain, Gaurav;Patney, Aditya
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.3.1-3.8
    • /
    • 2018
  • Background: In this research article, we evaluate the use of sub-periosteal tunneling (tunnel technique) combined with alloplastic in situ hardening biphasic calcium phosphate (BCP, a compound of β-tricalcium phosphate and hydroxyapatite) bone graft for lateral augmentation of a deficient alveolar ridge. Methods: A total of 9 patients with deficient mandibular alveolar ridges were included in the present pilot study. Ten lateral ridge augmentation were carried out using the sub-periosteal tunneling technique, including a bilateral procedure in one patient. The increase in ridge width was assessed using CBCT evaluation of the ridge preoperatively and at 4 months postoperatively. Histological assessment of the quality of bone formation was also carried out with bone cores obtained at the implant placement re-entry in one patient. Results: The mean bucco-lingual ridge width increased in average from 4.17 ± 0.99 mm to 8.56 ± 1.93 mm after lateral bone augmentation with easy-graft CRYSTAL using the tunneling technique. The gain in ridge width was statistically highly significant (p = 0.0019). Histomorphometric assessment of two bone cores obtained at the time of implant placement from one patient revealed 27.6% new bone and an overall mineralized fraction of 72.3% in the grafted area 4 months after the bone grafting was carried out. Conclusions: Within the limits of this pilot study, it can be concluded that sub-periosteal tunneling technique using in situ hardening biphasic calcium phosphate is a valuable option for lateral ridge augmentation to allow implant placement in deficient alveolar ridges. Further prospective randomized clinical trials will be necessary to assess its performance in comparison to conventional ridge augmentation procedures.

Alveolar Ridge Preservation & Augmentation (치조제의 유지와 수복)

  • Chung, Sung-Min
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.7 no.1
    • /
    • pp.32-40
    • /
    • 1998
  • Alveolar ridge augmentation and preservation techniques designed to reconstruct deformed alveolar ridge now occupy a major role in esthetic dentistry. Previously, deformed alveolar ridges were filled with plastic materials(porcelain or resin) of prosthesis to restore ridge contours, which resulted in larger teeth and food impaction under the pontic base. So, prostheses of this type were unacceptable and really detectable when patients smiled. But nowadays, alveolar ridge augmentation procedures enable the dentists to provide patients with fixed prostheses that are esthetic. The development of guided tissue regeneration technique and materials also have made a major impact on extending the scope of therapeutic horizons in dentistry.

  • PDF

Ridge augmentation in implant dentistry

  • Kim, Young-Kyun;Ku, Jeong-Kui
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.46 no.3
    • /
    • pp.211-217
    • /
    • 2020
  • In patients with insufficient bone height and width, the successful placement of dental implants is difficult with regards to maintaining an ideal pathway and avoiding important anatomical structures. Vertical and/or horizontal ridge augmentation may be necessary using various bone substitute materials and bone graft procedures. However, effective one-wall reconstruction has been challenging due to its poor blood supply and insufficient graft stability. In this paper, the authors summarize current evidence-based literature based on the author's clinical experience. Regarding bone substitutes, it is advantageous for clinicians to select the types of bone substitutes including autogenous bone. The most important consideration is to minimize complications through principle-based ridge augmentation surgery. Ridge augmentation should be decided with complete consent of the patients due to the possible disadvantages of surgery, complications, and unpredictable prognosis.

Horizontal Ridge Augmentation with Piezoelectric Hinge-Assisted Ridge Split Technique in the Atrophic Posterior Mandible

  • Cha, Min-Sang;Lee, Ji-Hye;Lee, Sang-Woon;Cho, Lee-Ra;Huh, Yoon-Hyuk;Lee, You-Sun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.36 no.3
    • /
    • pp.124-130
    • /
    • 2014
  • Onlay bone grafting, guided bone regeneration, and alveolar ridge split technique are considered reliable bone augmentation methods on the horizontally atrophic alveolar ridge. Among these techniques, alveolar ridge split procedures are technique-sensitive and difficult to perform in the posterior mandible. This case report describes successful implant placement with the use of piezoelectric hinge-assisted ridge split technique in an atrophic posterior mandible.

Ridge Augmentation Using Vascularized Interpositional Periosteal- Connective Tissue (VIP-CT) in Conjunction with Anterior Implant Placement in Maxilla : Report of Three Cases (상악 전치부의 임플란트 식립과 관련하여 혈관개재골막결합조직판막술을 이용한 치조제증대술: 3가지 증례보고)

  • Kim, Yun-Sang
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.2
    • /
    • pp.207-214
    • /
    • 2008
  • Purpose: The aim of augmentation of the alveolar ridge is to restore absorbed alveolar ridges for future implant site or esthetic prosthodontic restoration. The present clinical report describes the anterior maxillary augmentation cases using a soft tissue rotated palatal flap, and considers various problems of before and after surgery. Method: First & second patients were treated by vascularized interpositional periosteal-connective tissue(VIP-CT) flap for horizontal soft tissue augmentation. Especially second patient was progressed with bone grafting at the same time. Third patient was treated by the same flap with bone graft and implant placement in single tooth missing premaxillary area. Result: The obtained horizontal augmentation width measured $0.5{\sim}2.7\;mm$. Conclusion: This technique constitutes a viable approach for augmentation the anterior sector of alveolar ridge with the placement of dental implants. But it needs correct diagnosis preparation and careful surgery skill.

Correction of anterior ridge defect for conventional prosthesis (보철 치료시 전치부 치조제 결손부의 처치)

  • Chung, Jae-Eun;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Han, Soo-Boo
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.4
    • /
    • pp.729-736
    • /
    • 2008
  • Purpose: Anterior ridge defect after tooth extraction results in unfavorable appearance. Ridge augmentation procedures should be preceded by careful surgical-prosthetic treatment planning, and various techniques can be used in anterior ridge augmentation. Materials and Methods: Three patients showed deformed ridges after tooth extraction. Three different techniques ; onlay-interpositional connective tissue graft; bovine hydroxyapatite graft with free connective tissue graft; bovine hydroxyapatite graft with resorbable collagen membrane following free connective tissue graft; were used for anterior ridge augmentation. Result: Soft tissue graft can be used in small amount of ridge defect, hard tissue graft combined with soft tissue graft can be used in large amount of ridge defect. After ridge augmentation, about three months of healing period, augmented tissue was stabilized. The final restoration was initiated after this healing period, and the tissue form was maintained stable. Conclusion: Careful diagnosis and surgical-prosthetic treatment planning with joint consultation prior to surgery should be performed in order to attain an optimal esthetic results.

Clinical evaluation of ridge augmentation using autogenous tooth bone graft material: case series study

  • Lee, Ji-Young;Kim, Young-Kyun;Yi, Yang-Jin;Choi, Joon-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.4
    • /
    • pp.156-160
    • /
    • 2013
  • Objectives: Interest in bone graft material has increased with regard to restoration in cases of bone defect around the implant. Autogenous tooth bone graft material was developed and commercialized in 2008. In this study, we evaluated the results of vertical and horizontal ridge augmentation with autogenous tooth bone graft material. Materials and Methods: This study targeted patients who had vertical or horizontal ridge augmentation using AutoBT from March 2009 to April 2010. We evaluated the age and gender of the subject patients, implant stability, adjunctive surgery, additional bone graft material and barrier membrane, post-operative complication, implant survival rate, and crestal bone loss. Results: We performed vertical and horizontal ridge augmentation using powder- or block-type autogenous tooth bone graft material, and implant placement was performed on nine patients (male: 7, female: 2). The average age of patients was $49.88{\pm}12.98$ years, and the post-operative follow-up period was $35{\pm}5.31$ months. Post-operative complications included wound dehiscence (one case), hematoma (one case), and implant osseointegration failure (one case; survival rate: 96%); however, there were no complications related to bone graft material, such as infection. Average marginal bone loss after one-year loading was $0.12{\pm}0.19$ mm. Therefore, excellent clinical results can be said to have been obtained. Conclusion: Excellent clinical results can be said to have been obtained with vertical and horizontal ridge augmentation using autogenous tooth bone graft material.