• Title/Summary/Keyword: Rinse off cosmetics

Search Result 5, Processing Time 0.018 seconds

Risk Assessment of 5-Chloro-2-Methylisothiazol-3(2H)-One/2-Methylisothiazol-3(2H)-One (CMIT/MIT) Used as a Preservative in Cosmetics

  • Kim, Min Kook;Kim, Kyu-Bong;Lee, Joo Young;Kwack, Seung Jun;Kwon, Yong Chan;Kang, Ji Soo;Kim, Hyung Sik;Lee, Byung-Mu
    • Toxicological Research
    • /
    • v.35 no.2
    • /
    • pp.103-117
    • /
    • 2019
  • The mixture of 5-chloro-2-methylisothiazol-3(2H)-one (CMIT) and 2-methylisothiazol-3(2H)-one (MIT), CMIT/MIT, is a preservative in cosmetics. CMIT/MIT is a highly effective preservative; however, it is also a commonly known skin sensitizer. Therefore, in the present study, a risk assessment for safety management of CMIT/MIT was conducted on products containing 0.0015% of CMIT/MIT, which is the maximum MIT level allowed in current products. The no observed adverse effect level (NOAEL) for CMIT/MIT was 2.8 mg/kg bw/day obtained from a two-generation reproductive toxicity test, and the skin sensitization toxicity standard value for CMIT/MIT, or the no expected sensitization induction level (NESIL), was $1.25{\mu}g/cm^2/day$ in humans. According to a calculation of body exposure to cosmetics use, the systemic exposure dosage (SED) was calculated as 0.00423 mg/kg bw/day when leave-on and rinse-off products were considered. Additionally, the consumer exposure level (CEL) amounted to $0.77512{\mu}g/cm^2/day$ for all representative cosmetics and $0.00584{\mu}g/cm^2/day$ for rinse-off products only. As a result, the non-cancer margin of safety (MOS) was calculated as 633, and CMIT/MIT was determined to be safe when all representative cosmetics were evaluated. In addition, the skin sensitization acceptable exposure level (AEL)/CEL was calculated as 0.00538 for all representative cosmetics and 2.14225 for rinse-off products; thus, CMIT/MIT was considered a skin sensitizer when all representative cosmetics were evaluated. Current regulations indicate that CMIT/MIT can only be used at concentrations 0.0015% or less and is prohibited from use in other cosmetics products. According to the results of this risk assessment, the CMIT/MIT regulatory values currently used in cosmetics are evaluated as appropriate.

Scanning Electron Microscopic Study on the Microplastics in Rinse Off Cosmetics (피부 청결 화장품에 첨가된 미세플라스틱의 주사전자현미경적 연구)

  • Kim, Kyung-Sook;Chang, Byung-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.9
    • /
    • pp.252-257
    • /
    • 2019
  • We investigated the microstructure and morphological characteristics of microplastics added to rinse off cosmetics by scanning electron microscope. The size of the microplastic was in a wide range of sizes, from $250{\mu}m$ to 1.5mm in diameter. The small microplastics were in the shape of elongated particles and the large microplastics were cuboidal. Most cubic microplastics were observed in the form of squares or rectangles. The surface of the cubic microplastic was smoothly observed without protruding portions, but irregularly many gaps were formed. The gap between openings was measured from about $5{\mu}m$ to $20{\mu}m$. It has not been confirmed that these gaps are formed from the surface of the microplastic to the inside there of.

Risk Assessment of Triclosan, a Cosmetic Preservative

  • Lee, Jung Dae;Lee, Joo Young;Kwack, Seung Jun;Shin, Chan Young;Jang, Hyun-Jun;Kim, Hyang Yeon;Kim, Min Kook;Seo, Dong-Wan;Lee, Byung-Mu;Kim, Kyu-Bong
    • Toxicological Research
    • /
    • v.35 no.2
    • /
    • pp.137-154
    • /
    • 2019
  • Triclosan (TCS) is an antimicrobial compound used in consumer products. The purpose of current study was to examine toxicology and risk assessment of TCS based on available data. Acute toxicities of oral, transdermal and inhalation routes were low, and phototoxicity and neurotoxicity were not observed. Topical treatment of TCS to animal caused mild irritation. TCS did not induce reproductive and developmental toxicity in rodents. In addition, genotoxicity was not considered based on in vitro and in vivo tests of TCS. It is not classified as a carcinogen in international authorities such as International Agency for Research on Cancer (IARC). No-observed-adverse-effect level (NOAEL) was determined 12 mg/kg bw/day for TCS, based on haematoxicity and reduction of absolute and relative spleen weights in a 104-week oral toxicity study in rats. Percutaneous absorption rate was set as 14%, which was human skin absorption study reported by National Industrial Chemicals Notification and Assessment Scheme (NICNAS) (2009). The systemic exposure dosage (SED) of TCS has been derived by two scenarios depending on the cosmetics usage of Koreans. The first scenario is the combined use of representative cosmetics and oral care products. The second scenario is the combined use of rinse-off products of cleansing, deodorants, coloring products, and oral care products. SEDs have been calculated as 0.14337 mg/kg bw/day for the first scenario and 0.04733 mg/kg bw/day for the second scenario. As a result, margin of safety (MOS) for the first and second scenarios was estimated to 84 and 253.5, respectively. Based on these results, exposure of TCS contained in rinse-off products, deodorants, and coloring products would not pose a significant health risk when it is used up to 0.3%.

Application of Polymers in Cosmetics (고분자 물질의 화장품 응용)

  • Cho, Wan-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.411-422
    • /
    • 2013
  • Polymers in cosmetics are used to deliver desired attributes to skin and hair. Precisely constructed block and graft copolymers widen the range of available mechanical properties and compatibilities. Stimuli responsive hydrophobic polymers can be triggered to become hydrophilic by changes in their environment and this can confer waterproof properties at low temperature and easy water removal at higher temperatures. Transfer-resistant cosmetics can be possible due to silicone resins. The control of rheology properties in cosmetics gradually continue to be easy with copolymers. Durability of colors and fragrances for rinse-off products can be enhanced by delivery systems from complex coacervates. Polymeric anti-microbials promise product preservation while minimizing the concern of skin permeation. This article reviews recent trends in the use of polymers in cosmetics.

Screening and detection of methylisothiazolinone and chloromethylisothiazolinone in cosmetics by UPLC-MS/MS

  • Lee, Ji Hyun;Paek, Ji Hyun;Park, Han Na;Park, Seongsoo;Kang, Hoil
    • Analytical Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.125-133
    • /
    • 2020
  • Methylisothiazolinone (MIT) and chloromethylisothiazolinone (CMIT) cause allergic contact dermatitis and are banned cosmetics ingredients, except in rinse-off products. However, their presence has been detected in cosmetics. We report a UPLC-tandem MS/MS screening method for their simultaneous determination in cosmetics. To facilitate extraction from various matrices, pretreatment methods were developed for each sample type. The method was optimized through a series of assessments, including specificity, LOD, LOQ, linearity, recovery, stability, precision, and accuracy. The LODs and LOQs for MIT ranged from 0.054 and 0.163 ㎍ mL-1 whereas those for CMIT ranged from 0.040 and 0.119 ㎍ mL-1. The linear correlation coefficients (r2) were higher than 0.999. Relative standard deviations (RSDs) for both intra- and inter-day measurements ranged from 0.3 ~ 13.6 %. Recoveries at three different concentrations were within 87.9 ~ 118.9 %. The RSD for stability measurements of spiked samples was within 7 %. These results confirm the suitability of the developed method for the simultaneous quantitation of MIT and CMIT in cosmetics. Samples of 320 color cosmetics, including eyeshadows, solid lipsticks, liquid lipsticks, and nail polishes were analyzed using the developed method, and two of them were found to contain both MIT and CMIT and one of them was found to contain only MIT. This data and the method will aid the regulation of ingredients used in cosmetics.