• Title/Summary/Keyword: Risk mitigation actions

Search Result 9, Processing Time 0.025 seconds

A Framework of Managing Supply Chain Disruption Risks Using Network Reliability

  • Ohmori, Shunichi;Yoshimoto, Kazuho
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.2
    • /
    • pp.103-111
    • /
    • 2013
  • This paper discusses how to manage supply chain disruption risks from natural disasters or other low-likelihood-high-impact risk drivers. After the catastrophic earthquake in Eastern Japan and the severe flood in Thailand, most companies have been attempting to re-establish the business continuity plan to prevent their supply chain from disruption. However, the challenges for managers and individual risks are often interrelated, and thus, actions that mitigate one risk can end up being no contribution as a whole. In this paper, we describe a framework for assessing how much impact individual mitigation strategies have on the entire supply chain protection against disruption, using network reliability. We propose three categories of risk-mitigation approaches: Stabilization, Absorption, and Duplication. We analyze the situation under which each of these strategies is the best suitable. With a clear understanding of relations between these mitigation strategies and the entire supply chain risks, managers can select effective risk-reduction approaches to their supply chain.

A Probabilistic Approach to Forecasting and Evaluating the Risk of Fishing Vessel Accidents in Korea

  • Kim, Dong-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.302-310
    • /
    • 2018
  • Despite the accident rate for fishing vessels accounts for 70% of all maritime accidents, few studies on such accidents have been done and most of the them mainly focus on causes and mitigation policies to reduce that accident rate. Thus, this risk analysis on sea accidents is the first to be performed for the successful and efficient implementation of accident reducing measures. In risk analysis, risk is calculated based on the combination of frequency and the consequence of an accident, and is usually expressed as a single number. However, there exists uncertainty in the risk calculation process if one uses a limited number of data for analysis. Therefore, in the study we propose a probabilistic simulation method to forecast risk not as a single number, but in a range of possible risk values. For the capability of the proposed method, using the criteria with the ALARP region, we show the possible risk values spanning across the different risk regions, whereas the single risk value calculated from the existing method lies in one of the risk regions. Therefore, a decision maker could employ appropriate risk mitigation options to handle the risks lying in different regions. For this study, we used fishing vessel accident data from 1988 to 2016.

A Risk Management Framework for New Product Development: A Case Study

  • Kasemset, Chompoonoot;Wannagoat, Jaruwan;Wattanutchariya, Wassanai;Tippayawong, Korrakot Y.
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.2
    • /
    • pp.203-209
    • /
    • 2014
  • This research designed and implemented a supply chain risk management platform and applied it to a case study of reduced-fat Lanna pork sausage as a new product development project. The proposed framework has three stages: risk identification, risk assessment, and risk mitigation. Seventeen risk agents with 17 risk events were identified based on SWOT analysis and the Porter Five Forces concept through the process of planning, sourcing, making and delivering, partially captured from the supply chain operations reference model in the first stage. In the second stage, an house of risk (HOR) framework was applied to present the impacts of each risk agent. In the third stage, eight risk agents with high impact were selected to design 21 preventive actions. Finally, three preventive actions with the highest effectiveness to difficulty ratio scores-'sales evaluation of familiar products', 'increasing distribution channels and promotions to improve sales', and 'work flow improvement for work safety'-were then recommended for this new product development.

A Study on the Multiple Spurious Operation Analysis in Fire Events Probabilistic Safety Assessment of Domestic Nuclear Power Plant (국내 원자력발전소의 화재사건 확률론적안전성평가에서 다중오동작 분석 연구)

  • Kang, Dae Il;Jung, Yong Hun;Choi, Sun Yeong;Hwang, Mee-Jeong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.136-143
    • /
    • 2018
  • In this study, we conducted a pilot study on the multiple spurious operations (MSO) analysis in the fire probabilistic safety assessment (PSA) of domestic nuclear power plant (NPP) to identify the degree of influence of the operator actions used in the MSO mitigation strategies. The MSO scenario of the domestic reference NPP selected for this study is refueling water tank (RWT) drain down event. It could be caused by spurious operations of the containment spray system (CSS) of the reference NPP. The RWT drain down event can be stopped by the main control room (MCR) operator actions for stopping the operation of CSS pump or closing the CSS motor operated valve if the containment spray actuation signal (CSAS) is spuriously actuated. Outside the MCR, it can be stopped by operator actions for closing the CSS manual valves or motor operated valve or stopping the operation of CSS pump. The quantification result of a fire PSA model that takes into account all recovery actions for the RWT drain down event lead to risk reduction by about 95%, compared with quantification result of fire PSA model without considering them. Among the various operator actions, the recovery action for the spurious CSAS operations and the operator action for the manual valve are identified as the most important operator actions. This study quantitatively showed the extent to which the operator actions used as MSO countermeasures have affected the fire PSA quantification results. In addition, we can see the rank of importance among the operator recovery actions in quantitative terms.

Projection of Temporal Trends on Drought Characteristics using the Standardized Precipitation Evapotranspiration Index (SPEI) in South Korea (표준강수증발산지수를 활용한 미래 가뭄특성의 시계열 변화전망)

  • Nam, Won-Ho;Hayes, Michael J.;Wilhite, Donald A.;Svoboda, Mark D.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.37-45
    • /
    • 2015
  • Recent droughts in South Korea have had large economic and environmental impacts across the country. Changes in rainfall and hydrologic patterns due to climate change can potentially increase the occurrence of extreme droughts and affect the future availability of water resources. Therefore, it is necessary to evaluate drought vulnerability for water resources planning and management, and identify the appropriate mitigation actions to conduct a drought risk analysis in the context of climate change. The objective of this study is changes in the temporal trends of drought characteristics in South Korea to examine drought impacts under climate change. First, the changes of drought occurrence were analyzed by applying the Standardized Precipitation Evapotranspiration Index (SPEI) for meteorological data on 54 meteorological stations, and were analyzed for the past 30 years (1981-2010), and Representative Concentration Pathways (RCP) climate change scenarios (2011-2100). Second, the changes on the temporal trends of drought characteristics were performed using run theory, which was used to compare drought duration, severity, and magnitude to allow for quantitative evaluations under past and future climate conditions. These results show the high influence of climate change on drought phenomenon, and will contribute to water resources management and drought countermeasures to climate change.

Development of a Fully-Coupled, All States, All Hazards Level 2 PSA at Leibstadt Nuclear Power Plant

  • Zvoncek, Pavol;Nusbaumer, Olivier;Torri, Alfred
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.426-433
    • /
    • 2017
  • This paper describes the development process, the innovative techniques used and insights gained from the latest integrated, full scope, multistate Level 2 PSA analysis conducted at the Leibstadt Nuclear Power Plant (KKL), Switzerland. KKL is a modern single-unit General Electric Boiling Water Reactor (BWR/6) with Mark III Containment, and a power output of $3600MW_{th}/1200MW_e$, the highest among the five operating reactors in Switzerland. A Level 2 Probabilistic Safety Assessment (PSA) analyses accident phenomena in nuclear power plants, identifies ways in which radioactive releases from plants can occur and estimates release pathways, magnitude and frequency. This paper attempts to give an overview of the advanced modeling techniques that have been developed and implemented for the recent KKL Level 2 PSA update, with the aim of systematizing the analysis and modeling processes, as well as complying with the relatively prescriptive Swiss requirements for PSA. The analysis provides significant insights into the absolute and relative importances of risk contributors and accident prevention and mitigation measures. Thanks to several newly developed techniques and an integrated approach, the KKL Level 2 PSA report exhibits a high degree of reviewability and maintainability, and transparently highlights the most important risk contributors to Large Early Release Frequency (LERF) with respect to initiating events, components, operator actions or seismic component failure probabilities (fragilities).

Fragility curves for the typical multi-span simply supported bridges in northern Pakistan

  • Waseem, Muhammad;Spacone, Enrico
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.213-223
    • /
    • 2017
  • Bridges are lifeline and integral components of transportation system that are susceptible to seismic actions, their vulnerability assessment is essential for seismic risk assessment and mitigation. The vulnerability assessment of bridges common in Pakistan is very important as it is seismically very active region and the available code for the seismic design of bridges is obsolete. This research presents seismic vulnerability assessment of three real case simply supported multi-span reinforced concrete bridges commonly found in northern Pakistan, having one, two and three bents with circular piers. The vulnerability assessment is carried through the non-linear dynamic time history analyses for the derivation of fragility curves. Finite element based numerical models of the bridges were developed in MIDAS CIVIL (2015) and analyzed through with non-linear dynamic and incremental dynamic analyses, using a suite of bridge-specific natural spectrum compatible ground motion records. Seismic responses of shear key, bearing pad, expansion joint and pier components of each bridges were recorded during analysis and retrieved for performance based analysis. Fragility curves were developed for the bearing pads, shear key, expansion joint and pier of the bridges that first reach ultimate limit state. Dynamic analysis and the derived fragility curves show that ultimate limit state of bearing pads, shear keys and expansion joints of the bridges exceed first, followed by the piers ultimate limit state for all the three bridges. Mean collapse capacities computed for all the components indicated that bearing pads, expansion joints, and shear keys exceed the ultimate limit state at lowest seismic intensities.

Seismic vulnerability assessment criteria for RC ordinary highway bridges in Turkey

  • Avsar, O.;Yakut, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.127-145
    • /
    • 2012
  • One of the most important and challenging steps in seismic vulnerability and performance assessment of highway bridges is the determination of the bridge component damage parameters and their corresponding limit states. These parameters are very essential for defining bridge damage state as well as determining the performance of highway bridges under a seismic event. Therefore, realistic damage limit states are required in the development of reliable fragility curves, which are employed in the seismic risk assessment packages for mitigation purposes. In this article, qualitative damage assessment criteria for ordinary highway bridges are taken into account considering the critical bridge components in terms of proper engineering demand parameters (EDPs). Seismic damage of bridges is strongly related to the deformation of bridge components as well as member internal forces imposed due to seismic actions. A simple approach is proposed for determining the acceptance criteria and damage limit states for use in seismic performance and vulnerability assessment of ordinary highway bridges in Turkey constructed after the 1990s. Physical damage of bridge components is represented by three damage limit states: serviceability, damage control, and collapse prevention. Inelastic deformation and shear force demand of the bent components (column and cap beam), and superstructure displacement are the most common causes for the seismic damage of the highway bridges. Each damage limit state is quantified with respect to the EDPs: i.e. curvature and shear force demand of RC bent components and superstructure relative displacement.

From Radon and Thoron Measurements, Inhalation Dose Assessment to National Regulation and Radon Action Plan in Cameroon

  • Saidou;Shinji Tokonami;Masahiro Hosoda;Augustin Simo;Joseph Victor Hell;Olga German;Esmel Gislere Oscar Meless
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.4
    • /
    • pp.237-245
    • /
    • 2022
  • Background: The current study reports measurements of activity concentrations of radon (220Rn) and thoron (220Rn) in dwellings, followed by inhalation dose assessment of the public, and then by the development of regulation and the national radon action plan (NRAP) in Cameroon. Materials and Methods: Radon, thoron, and thoron progeny measurements were carried out from 2014 to 2017 using radon-thoron discriminative detectors (commercially RADUET) in 450 dwellings and thoron progeny monitors in 350 dwellings. From 2019 to 2020, radon track detectors (commercially RADTRAK) were deployed in 1,400 dwellings. It was found that activity concentrations of radon range in 1,850 houses from 10 to 2,620 Bq/㎥ with a geometric mean of 76 Bq/㎥. Results and Discussion: Activity concentrations of thoron range from 20 to 700 Bq/㎥ with a geometric mean of 107 Bq/㎥. Thoron equilibrium factor ranges from 0.01 to 0.6, with an arithmetic mean of 0.09 that is higher than the default value of 0.02 given by UNSCEAR. On average, 49%, 9%, and 2% of all surveyed houses have radon concentrations above 100, 200, and 300 Bq/㎥, respectively. The average contribution of thoron to the inhalation dose due to radon and thoron exposure is about 40%. Thus, thoron cannot be neglected in dose assessment to avoid biased results in radio-epidemiological studies. Only radon was considered in the drafted regulation and in the NRAP adopted in October 2020. Reference levels of 300 Bq/㎥ and 1,000 Bq/㎥ were recommended for dwellings and workplaces. Conclusion: Priority actions for the coming years include the following: radon risk mapping, promotion of a protection policy against radon in buildings, integration of the radon prevention and mitigation into the training of construction specialists, mitigation of dwellings and workplaces with high radon levels, increased public awareness of the health risks associated with radon, and development of programs on the scientific and technical aspects.