• Title/Summary/Keyword: River Basin

Search Result 2,349, Processing Time 0.037 seconds

Calculation of the Areal Reduction Factor of Hancheon River Basin based on Considering the Rainfall Characteristics in Jeju Island (제주도의 강우특성을 고려한 한천유역의 면적감소계수 산정연구)

  • Kang, Myung-Soo;Yang, Sung-Kee;Kim, Young-seok;Kang, Bo-Seong;Yang, Se-Chang
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1389-1397
    • /
    • 2017
  • In this study, we calculated the fixed-type Areal Reduction Factor (ARF) of the Hancheon River basin in Jeju Island, and compared the calculated ARF and the ARF of the four major river basins suggested by the Ministry of Land, Infrastructure and Transport. As a result, the maximum fluctuation ratios of ARF for the four major river basins calculated using area, frequency, and initial duration time were significant: 7.61% for the Hangang River basin; 12.69% for the Nakdonggang River basin; 8.09% for the Kumgang River basin; and 17.98% for the Yeongsangang River basin. In addition, the differences between the maximum and minimum value of ARF for the Hancheon River basin based on 48 hours was 2.13%, and it was smaller than the one for the four major river basins: 8.92% for the Hangang River basin; 11.41% for the Nakdonggang River basin; 8.87% for the Kumgang River basin; and 17.17% for the Yeongsangang River basin. The Yeongsangang River basin had the highest difference.

Study of Design Flood Estimation by Watershed Characteristics (유역특성인자를 이용한 설계홍수량 추정에 관한 연구)

  • Park, Ki-Bum
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.887-895
    • /
    • 2006
  • Through this research of the analysis on the frequency flood discharges regarding basin property factors, a linear regression system was introduced, and as a result, the item with the highest correlation with the frequency flood discharges from Nakdong river basin is the basin area, and the second highest is the average width of basin and the river length. The following results were obtained after looking at the multi correlation between the flood discharge and the collected basin property factors using the data from the established river maintenance master plan of the one hundred twenty-five rivers in the Nakdong river basin. The result of analysis on multivariate correlation between the flood discharges and the most basic data in determining the flood discharges as basin area, river length, basin slope, river slope, average width of basin, shape factor and probability precipitation showed more than 0.9 of correlation in terms of the multi correlation coefficient and more than 0.85 for the determination coefficient. The model which induced a regression system through multi correlation analysis using basin property factors is concluded to be a good reference in estimating the design flood discharge of unmeasured basin.

Soil Loss Vulnerability Assessment in the Mekong River Basin

  • Thuy, Hoang Thu;Lee, Giha
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.37-47
    • /
    • 2017
  • The Mekong River plays an extremely important role in Southeast Asia. Flowing through six countries, including China, Myanmar, Thailand, Laos PDR, Cambodia, and Vietnam, it is a site of great biological and ecological diversity and the habitat of numerous species of fish. It also supports a very large population that lives along the river basin. Therefore, much attention has been focused on the giant Mekong River Basin, particularly, its soil erosion and sedimentation problems. In fact, many methods have been used to calculate and simulate these problems. However, in the case of the Mekong River Basin, the available data is limited because of the extreme size of the area (about $795,000km^2$) and lack of equipment systems in the countries through which the Mekong River flows. In this study, we applied the Universal Soil Loss Equation (USLE) model in a GIS (Geographic Information System) framework to calculate the amount of soil erosion and sediment load during the selected period, from 1951 to 2007. The result points out dangerous areas, such as the Upper Mekong River Basin and 3S Basin (containing the Sekong, Sesan, and Srepok Rivers) that are suffering the serious consequences of soil erosion problems. Moreover, the present model is also useful for supporting river basin management in the implementation of sustainable management practices in the Mekong River Basin and other basins.

MOSIM NETWORK FLOW MODELING FOR IMPROVING CRITICAL HABITAT IN PLATTE RIVER BASIN (플랫강 유역의 위험에 처한 서식지 보호를 위한 MODSIM 하천 네트워크 흐름모의)

  • Lee, Jin-Hee;Kim, Kil-Ho;Shim, Myung-Pil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.2039-2043
    • /
    • 2007
  • Like other major river basin systems in the West of the United States the Platte River Basin are faced with the challenges of allocating more water for plant and animal species. A part of the Central Platte River was designated as critical habitat for the whooping crane in 1978. The water allocation system in the Platte River Basin is dominated by the Prior Appropriation Doctrine, which allocates water according to the priorities based on the date of water use. The Platte River Basin segregated into five subregions for purpose of analysis. 24 years of historic records of monthly flow and all the demands were complied. The simulation of river basin modeling includes physical operation of the system including water allocation by water rights and interstate compact agreements, reservoir operations, and diversion with consumptive use and return flow. MODSIM, a generalized river basin network model, was used for estimating the timing and magnitude of impacts on river flows and diversions associated with water transfers from each region. A total of 20 alternatives were considered, covering transfers from each of the five regions of basin with several options. The result shows that the timing and availability of augmented water at the critical habitat is not only a function of use by junior appropriators, but also of river losses, and timing of return flows.

  • PDF

Monitoring Land Cover Changes in Nakdong River Basins Using Multi-temporal Landsat Imageries and LiDAR Data (다중시기에 촬영된 Landsat 영상과 LiDAR 자료를 활용한 낙동강 유역의 토지 피복 변화 모니터링)

  • Choung, Yun Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.242-242
    • /
    • 2015
  • Monitoring the land cover changes in Nakdong River Basins using the multi-temporal remote sensing datasets is necessary for preserving properties in the river basins and monitoring the environmental changes in the river basins after the 4 major river restoration project. This research aims to monitor the land cover changes using the multi-temporal Landsat imageries and the airborne topographic LiDAR data. Firstly, the river basin boundaries are determined by using the LiDAR data, and the multiple river basin imageries are generated from the multi-temporal Landsat imageries by using the river basin boundaries. Next the classification method is employed to identify the multiple land covers in the generated river basin imageries. Finally, monitoring the land cover changes is implemented by comparing the differences of the same clusters in the multi-temporal river basin imageries.

  • PDF

River Terraces and Geomorphic Development of Subi Basin, Yeongyang (하안단구와 수비분지의 지형발달)

  • Son, Myoung Won
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.2
    • /
    • pp.15-25
    • /
    • 2017
  • Subi basin is located at the crestline of Taebaek mountains. This paper aims to elucidate the geomorphic development of Subi basin through the analysis of river terraces built in Wangpi-cheon and Banbyeon-cheon. Wangpi-cheon flows northeastward from Subi basin, and Banbyeon-cheon flows southward at the west of Subi basin. Absolute age of terrace is measured by means of OSL methodology, long profile of Wangpi-cheon is made up with 10m interval contour line, and the elevation above river bed of high terraces is measured at the end part of terrace. The results are as follow: Firstly, high river terraces of Subi basin, Wangpi-cheon and Banbyeon-cheon are formed about 40 kyr(MIS 3) being interstadial stage of last glacial period. Secondly, the elevation above river bed of high terraces of Wangpi-cheon and Banbyeon-cheon tends to increase toward upstream. It means that the uplift of Taebaek Mountains influences considerably the formation of their terraces. Thirdly, the elevation above river bed of high terraces at the reach from Seomchon to Suha-ri of Wangpi-cheon tends to decrease toward upstream. This section is captured from Banbyeon-cheon flowing in the opposite direction. River piracy has occurred from the time of formation of Suha-ri high terrace to the time of formation of Hantee wind gap. Finally, for fluvial system of Wangpi-cheon to establish dynamic equilibrium, topographic axis will move toward Banbyeon-cheon.

INTEGRATED WATER RESOURCES AND QUALITY MANAGEMENT SYSTEM USING GIS/RS TECHNOLOGIES

  • Shim, Kyu-Cheoul;Shim, Soon-Bo;Lee, Yo-Sang
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.85-92
    • /
    • 2002
  • There has been continuous efforts to manage water resources for the required water quality criterion at river channel in Korea. However, we could obtain the partial improvement only for the point sources such as, waste waters from urban and factory site through the water quality management. Therefore, it is strongly needed that the best management practice throughout the river basin fur water quality management including non-point sources pollutant loads. This problem should be resolved by recognizing the non-point sources pollutant loads from the upstream river basin to the outlet of the basin depends on the landuse and soil type characteristics of the river basin using the computer simulation by a distributed model based on the detailed investigation and application of Geographic Information System (GIS). The purpose of this study is consisted of the three major distributions, which are the investigation of spread non-point sources pollutants throughout the river basin, development of the base maps to represent and interpret the input and outputs of the distributed simulation model, and prediction of non-point sources pollutant loads at the outlet of a up-stream river basin using Agricultural Non-Point Sources Model (AGNPS). For the validation purpose, the Seom-Jin River basin was selected with two flood events in 1998. The results of this application showed that the use of combined a distributed model and an application of GIS was very effective fur the best water resources and quality management practice throughout the river basin

  • PDF

A Study on the Estimation of River Management Flow in Urban Basin (도시유역의 하천유지용수 산정에 관한 연구)

  • 이영화
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.377-385
    • /
    • 1996
  • This study aims at the estimation of a river management flow in urban basin analyzing Sinchun basin to be the tributary of Kumho river basin. The river management flow has to satisfy a low flow as natural flow and an environmental preservation flow estimated by a dilution flow to satisfy a target water quality in drought flow. Therefore for the estimation of a river management flow in Sinchun in this study, first Tank model as a basin runoff model estimates a low flow, a drought flow from a flow duration curve in Sinchun, second QUAL2E model as water quality model simulates water quality in Sinchun and estimates environmental preservation flow to satisfy a target water qua%its, BOD 8 mg/l by a dilution flow derived from Kumho river, Nakdong river and around water. And the river management flow is estimated by addition of a use flow and a loss flow to more flow between a low-flow and an environmental preservation flow.

  • PDF

Application of a Distribution Rainfall-Runoff Model on the Nakdong River Basin

  • Kim, Gwang-Seob;Sun, Mingdong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.976-976
    • /
    • 2012
  • The applicability of a distributed rainfall-runoff model for large river basin flood forecasts is analyzed by applying the model to the Nakdong River basin. The spatially explicit hydrologic model was constructed and calibrated by the several storm events. The assimilation of the large scale Nakdong River basin were conducted by calibrating the sub-basin channel outflow, dam discharge in the basin rainfall-runoff model. The applicability of automatic and semi-automatic calibration methods was analyzed for real time calibrations. Further an ensemble distributed rainfall runoff model has been developed to measure the runoff hydrograph generated for any temporally-spatially varied rainfall events, also the runoff of basin can be forecast at any location as well. The results of distributed rainfall-runoff model are very useful for flood managements on the large scale basins. That offer facile, realistic management method for the avoiding the potential flooding impacts and provide a reference for the construct and developing of flood control facilities.

  • PDF

A Study of Water Transfer between Han River and Nakdong River Basins (한강-낙동강 유역간 물이동 분석)

    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.483-490
    • /
    • 1998
  • The possibility of water transfer from Han river basin to Nakdong river basin by connecting them is studied as an alternative to solve water shortage problem in Nakdong river basin. After estimating the amount of water shortage from Nakdong river basin, the amount of water surplus from Han river basin is estimated by using simulation and optimization techniques. HEC-5 is used to study small to medium size reservoirs as a simulation technique and dynamic programming is used to study multi-purpose reserviors as an optimization technique. Also, the cost of the interbasin water transfer from Han river basin to Nakdong river basin is also compared with that of constructing new reserviors in Nakdong river basin. If new reservoirs are constructed in Nakdong river basin as planned, water supply can satisfy various water demands until 2021 without the interbasin water transfer. In economic point of view, constructing new reserviors has an advantage over the interbasin water transfer.

  • PDF