• Title/Summary/Keyword: Riverbank Filtration

Search Result 65, Processing Time 0.029 seconds

창원시 대산면 낙동강변 퇴적층과 지하수의 철.망간 분포 특성

  • Lee Hyo-Min;Ham Se-Yeong;Jeong Jae-Yeol;Lee Jeong-Hwan;Kim Hyeong-Su;Ryu Sang-Hun;Kim Tae-Won;Kim Mun-Su
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.324-327
    • /
    • 2006
  • The high Fe and Mn contents in riverbank filtered groundwater often provoke problems on the water quality, We analyzed the mineral and chemical compositions of the soil samples taken from the different depths of the fluvial deposits at various locations in the riverbank filtration area, Daesan-Myeon. The groundwater chemistry data were also collected from the equivalent depths with the soil samples at the boreholes in July and December, 2005. The relationships between the enrichment characteristics of Fe and Mn in the groundwater and the mineralogical and physicochemical properties of the fluvial deposits were carefully analyzed. The results indicate that the Fe and Mn contents in the groundwater vary with seasonally and show different enrichment behaviors.

  • PDF

Effect of silver nanoparticles on the performance of riverbank filtration: Column study (강변여과에서의 은나노입자의 영향 : 실험실규모 컬럼 실험)

  • Lee, Donghyun;No, Jin-Hyeong;Kim, Hyun-Chul;Choi, Jae-Won;Choi, Il-Hwan;Maeng, Sungkyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.77-88
    • /
    • 2015
  • Soil column experiments were evaluated effects of silver nanoparticles (i.e., 0, 2.5, 5, and 10 mg/L) on the microbial viability which is strongly associated with the degradation of organic matter, pharmaceutically active compounds(PhACs) and biological oxidation of nitrogenous compounds during river bank filtration. The addition of silver nanoparticles resulted in almost no change in the aqueous matrix. However, the intact cell concentration decreased with addition of silver nanoparticles from 2.5 to 10 mg/L, which accounted for 76% to 82% reduction compared to that of control (silver nanoparticles free surface water). The decrease in adenosine triphosphate was more pronounced; thus, the number and active cells in aqueous phase were concurrently decreased with added silver nanoparticles. Based on the florescence excitation-emission matrix and liquid chromatograph - organic carbon detection analyses, it shows that the removal of protein-like substances was relatively higher than that of humic-like substances, and polysaccharide was substantially reduced. But the extent of those substances removed during soil passage was decreased with the increasing concentration of silver nanoparticles. The attenuation of ionic PhACs ranged from 55% to 80%, depending on the concentration of silver nanoparticles. The attenuation of neutral PhACs ranged between 72% and 77%, which was relatively lower than that observed for the ionic PhACs. The microbial viability was affected by silver nanoparticles, which also resulted in inhibition of nitrifiers.

A Study on Groundwater Flow Modeling in the Fluvial Aquifer Adjacent to the Nakdong River, Book-Myeon Area, Changwon City (창원시 북면 낙동강 주변 하성퇴적층의 지하수유동 모델링 연구)

  • Hamm Se-Yeong;Cheong Jae-Yeol;Kim Hyoung-Su;Hahn Jeong-Sang;Ryu Su-Hee
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.499-508
    • /
    • 2004
  • Changwon City first constructed riverbank filtration plants in Book-Myeon and Daesan-Myeon in Korea in the year 2001. This study evaluated hydrogeological characteristics and groundwater flow simulation between the Nakdong River and the fluvial aquifers adjacent to the river in Book-Myeon, Changwon City. The groundwater simulation calculated the influx rate from the Nakdong River and the fluvial aquifers to pumping wells through the riverbank filtration system. The groundwater flow model utilized drilling, grain size analysis, pumping test, groundwater level measurements, river water discharge and rainfall data. Hydraulic heads calculated by the steady-state model closely matched measured heads in pumping and observation wells. According to the transient flow model, using a total pumping amount of 14,000 $m^3$/day, the flux into the pumping wells from the Nakdong River accounts for 8,390 $m^3$/day (60%), 590 $m^3$/day (4%) is from the aquifer in the rectilinea. direction to the Nakdong River, and 5,020 $m^3$/day (36%) is from the aquifer in the parallel direction to the Nakdong River. The particle tracking analysis shows that a particle from the Nakdong River moves toward the pumping wells at a rate of about 1.85 m/day and a particle from the aquifer moves toward the pumping wells at a rate of about 0.75 m/day. This study contributes to surface water/groundwater management modeling, and helps in understanding, how seasonal change affects pumping rates, water quality, and natural recharge.

In Situ Iron-manganese Removal by an Oxygenated Water Injection-and-extraction Technique in a Riverbank Filtration System (산소수 주입-양수 기법을 통한 강변여과수 내 철/망간 저감 평가)

  • Yi, Myeong-Jae;Cha, Jang-Hwan;Jang, Ho-June;Ahn, Hyun-suk;Hahn, Chan;Kim, Yongsung
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.339-347
    • /
    • 2015
  • Riverbank filtration has been suggested as a cost-effective method for improving water quality. However, high concentrations of Fe2+ and Mn2+ cause problems for the use of water and the maintenance of facilities. We evaluated the effectiveness and efficiency of an Fe2+ and Mn2+ removal technique based on the in situ injection of highly oxygenated water at a site on the Anseong River, between Anseong City and Pyeongtaek City, Gyeonggi Province. The removal process consists of three steps: injection, resting, and extraction. Results show that the removal efficiency increases with repeated application of the process. The amount of Fe-reduced drinking water satisfying water regulations (limit, 0.3 mg/L Fe) obtained using oxygenated water injection was five times higher than the amount of injected oxygenated water. Levels of Mn2+ were also reduced following the injection of oxygenated water.

Analytical Evaluation of Interference and Ratio of River Water at Riverbank Filtration Pumping Wells (강변여과 취수정의 간섭효과와 하천수 비율에 대한 해석적 평가)

  • Park, Namsik
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.8
    • /
    • pp.685-691
    • /
    • 2014
  • River bank filtration techniques seek to improve river water quality via natural processes occurring when river water is induced to a river bank. When water is pumped from multiple wells, phenomenon known as well interference affect pumping rates. Pumping wells of a bank filtration facility are connected by pipelines. In theses cases well interference is caused not only by groundwater drawdown but also by pipe headloss which depend on flow rates. In this work a comprehensive analytical method which handles groundwater flow and pipe flow is used to evaluate interferences and ratios of river water in pumping wells. A realistic case was used as an example.

Back Analysis for Parameter Estimation in Riverbank Filtration (강변여과 대수층의 매개변수 추정을 위한 역해석)

  • Park, Seo-Hwa;Lee, Sang-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1476-1480
    • /
    • 2005
  • 본 연구에서는 매개변수를 추정하는 방법 중 하나인 역해석을 이용하여 강변여과 지역의 투수량계수를 추정하였다. 최적화 기법으로 BFGS(Broyden-Fletcher-Goldfarb-Shanno)를, 정해석 프로그램으로 지하수위와 오염물 거동을 2차원적으로 모의할 수 있는 MOC(Method of Characteristics)을 이용하여 포트란으로 구성된 새로운 프로그램을 개발하였으며 프로그램의 적용성을 검증하기 위해 실제 강변여과를 하고 있는 경남 창원시 대산면의 8개월간 관측 지하수위를 이용하여 그 지역의 투수량계수를 추정하였다.

  • PDF

Field Measurement of Surface Hydraulic Conductivity Distribution Using Guelph Permeameter : A Case Study in the Riverbank Filtration Site of Kimhae (Ddanseom) (Guelph 투수계를 이용한 김해시 딴섬 강변여과수 지역의 지표 수리전도도 분포 조사)

  • Jeong, Jae-Hoon;Kim, Hyoung-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.2
    • /
    • pp.36-43
    • /
    • 2008
  • A method estimating unsaturated hydraulic conductivity using Guelph permeameter was developed and applied to the Ddanseom area of Kimhae in Nakdong River basin where the facilities producing bank-filtrated groundwaters are currently under construction. It is believed that the hydraulic conductivity values obtained from this study are useful in determination of recharges through unsaturated zone or from the river. The distribution of the surface hydraulic conductivity shows that sediments are finer downstream, implying the downstream part of Ddanseom has the higher potential of groundwater production.

Unit Water Production Cost Development for Alternative Water Resource Projects - Centered on the Economics of Aquifer Storage and Recovery (ASR) - (대안수자원시설의 음용수 단위생산비용 산출 - 청정지하저수지 경제성에 대한 고찰 -)

  • Choi, Jae-Ho;Shim, Young-Gyoo;Park, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.611-619
    • /
    • 2017
  • This paper intends to develop unit water production cost (UWPC) between alternative water resources including desalination, freshwater reservoirs, single-purpose dams, underground dams, and two indirect water in-take technologies - riverbank filtration and aquifer storage and recovery (ASR). The UWPCs of water supply schemes including each alternative are determined based on project cost, and operation and maintenance estimation models, which were developed based on real project cost data. The sensitivity analysis of UWPCs reveals that ASR is the lowest cost option in producing drinkable water among the alternatives, followed by riverbank filtration and underground dam. It is expected that economics related to the finding plays a critical role in supporting water resources planning and budget allocation for central and local water authority in Korea.

Determination of the Groundwater Yield of horizontal wells using an artificial neural network model incorporating riverside groundwater level data (배후지 지하수위를 고려한 인공신경망 기반의 수평정별 취수량 결정 기법)

  • Kim, Gyoo-Bum;Oh, Dong-Hwan
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.583-592
    • /
    • 2018
  • Recently, concern has arisen regarding the lowering of groundwater levels in the hinterland caused by the development of high-capacity radial collector wells in riverbank filtration areas. In this study, groundwater levels are estimated using Modflow software in relation to the water volume pumped by the radial collector well in Anseongcheon Stream. Using the water volume data, an artificial neural network (ANN) model is developed to determine the amount of water that can be withdrawn while minimizing the reduction of groundwater level. We estimate that increasing the pumping rate of the horizontal well HW-6, which is drilled parallel to the stream direction, is necessary to minimize the reduction of groundwater levels in wells OW-7 and OB-11. We also note that the number of input data and the classification of training and test data affect the results of the ANN model. This type of approach, which supplements ANN modeling with observed data, should contribute to the future groundwater management of hinterland areas.

Application of the Artificial Recharge to Reduce the Ground-water Drawdown of the Riverbank Filtration (강변여과 취수시 과도한 지하수 하강을 저감시키기 위한 인공함양의 활용방안 연구)

  • Lee Dong-Kee;Park Jae-Hyeoun;Park Chang-Kun;Yang Jung-Suk;Nam Do-Hyun;Kim Dae-kun;Jeong Gyo-cheol;Choi Yong-sun;Boo Sung-an
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.391-400
    • /
    • 2004
  • Excess pumping on the river bank filtration well causes the over drawdown in the protected area of bank, which may make many problems such as soil water contents, Pumping head in the irrigated land, and it needs more irrigation and development of the deeper irrigating well. In this study the installation of the artificial recharging well was suggested to reduce the excess draw down in the protected land. Artificial recharging wells were applied at the bank filtration site of Changwon city by using Visual-MODFLDW. The optimized conditions are calculated that the recharging well is located about loom apart from the pumping well, and the recharging rate is $5\%$ of the pumping yield.